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Abstract

This paper contributes a framework that helps to ful-

fill the requirements of the standards DIN EN 16247 and

ISO 50001 by combining (i) a synchronized data acquisi-

tion, (ii) data integration, (iii) learning of normal behav-

ior models and (iv) a implementation of an anomaly detec-

tion as prototype. Both standards require a reliable data

acquisition and energy consumption analysis for imple-

menting a certified energy management system. It shows

that this framework meets the specifications of the stan-

dards by implementing a combined data acquisition and

anomaly detection approach.

1. Introduction

Energy efficient machines are much more of interest

for the industry since the introduction of the ISO 50001

and the DIN EN 16247 for small and medium enterprises.

Some aspects of those standards are a reliable data acqui-

sition and analysis, which leads to anomaly and subop-

timal energy detection. A reliable Data Acquisition and

analysis defines multiple aspects. Those are (i) a synchro-

nized and time critical data acquisition on the sensor level

(ii) Data merging from multiple synchronized sources and

(iii) learning of normal behavior to implement anomaly

detection or other types of data analysis.

The contribution of this paper is a new framework,

which implements a time synchronized data acquisition

from various sources, a semantic data interface using

OPC UA and the detection of anomalies in discrete and

continuous-value as outlined in Figure 1. This type of

framework is currently not available for the automation

industry that covers all of the above mentioned aspects.

Other systems are able to cover the whole consumption of

energy and resources, but they lack the automated model

generation for industry machines and do not analyze the

energy data for anomalies. Also, as they are covering

whole production lines, they do not have the information

of small module parts. As this Framework is adapted di-

rectly into the sensor Level and as it is using OPC UA for

uniform data transfer, it is very suitable for this type of

systems to cover the last step, from a complete factory to

a single module in a machine.

This paper is organized as follows: This section con-

tinuous with the state of the art of each component used in

the framework. Section 2 briefly introduce the framework

with the learning and working phase. Section 3 illustrates

the results and the experimental platform, which is used to

verify the software behavior. The future work is described

in Section 4. Finally Section 5 concludes this paper.
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Figure 1. Framework Components.

Data Acquisition

Today’s solutions for data acquisition in factory automa-

tion include different approaches. On the IO device and

PLC level, IEC 61131-3 function blocks for communica-

tion are frequently used[9]. Above this level, different

middleware projects have been initiated in the last few

years, to provide a solution for distributed systems in au-

tomation applications; they can often be used to access

PLC and MES/SCADA level information. A overview

can be found in [3]. A number of projects is based on

web services and its DPWS (device profile for web ser-

vice). A overview about agent-based control and holonic



manufacturing systems (HMS) can be found in [5]. Also

Systems like OPC (Classic DA, HDA, etc.) or the OPC

Unified Architecture are often found in combination with

web service technologies. For energy data, either the nor-

mal (real-time) bus systems such as ProfiEnergy is used,

or alternative the current IEC 61850 standard is used. The

IEC 61850 Part 6, which is considered as the basic concept

for an automation system in general, defines a Substation

Configuration description Language (SCL).

Data Analysis

Learning timed automata is a rather new field of research,

e.g. in [6]. Some of them use as well negative as positive

examples. To include timing information Verwer[11] in-

troduced a splitting operation which splits a transition if

the resulting subtrees are different enough. Many indus-

trial applications are hybrid systems, which cannot be suf-

ficiently described with discrete event systems or strictly

continuous models. In [6] a new algorithms for the learn-

ing of timed hybrid automata was introduced. In these

approaches, the timed hybrid automata model the behav-

ior of sub-systems like e.g. components of robotic sys-

tems. The division of the overall system into sub-systems

is usually a-priori given by the user. The training of be-

havior models for the particular sub-systems can be per-

formed in two steps [8]. In the first step, a timed automa-

ton is trained by application of methods which are based

on the above mentioned algorithms. This step requires no

a-priori knowledge about the automaton structure and the

number of automaton states. Similar states are merged in

the second step of the automaton training.

Time Synchronization

To achieve a uniform time-base in today’s distributed au-

tomation systems, several methods and protocols exist. E.

g. for Ethernet based Networks the Precision Time Proto-

col (PTP, IEEE 1588) is able to provide synchronization of

different nodes with accuracy in the range of nanoseconds

while today’s system-wide process data acquisition solu-

tions only provide accuracy in the range of milliseconds

[1]. Time synchronization in wireless sensor networks

is quite different from synchronization in normal com-

puter networks. Because of the limited resources of sensor

nodes, computing complexity and energy consumption for

those are an issue. Related works at this field are Flood-

ing Time Synchronization Protocol (FTSP)[7] and Refer-

ence Broadcast Synchronization (RBS)[2]. There is also

a NTP-like approach [4].

2 Framework Components

The framework is a combination of hard- and soft-

ware. The data acquisition is able to use multiple hard-

ware adapters depending on the hardware. The acquired

data is stored in an OPC UA server and the anomaly de-

tection itself is a software which runs on an external com-

puter system. All modules are using OPC UA for data

transmission, therefore it is possible to create a boundless

vertical integration into a given industrial system.

To learn the normal behavior of machines and use it for

anomaly detection, the requirements on data acquisition

are the following (i) the energy and process-data must be

acquired synchronous to the process and (ii) comprehen-

sive over multiple processes. The bulk of today’s industry

machines is either using bus systems like PROFINET or

similar. In [9] a synchronous data acquisition was intro-

duced, this concept is able to cover the majority of ma-

chines. However the ISO50001 also claims that espe-

cially older machines near the end of their life-cycle has

to arm with such data acquisition techniques. To cover

those types of machines or to find a flexible approach to

expand industry machines in the course of the associated

project a wireless system was used. The main motivation

of using a Wireless Sensor Network [10] for this purpose

are the low installation costs. The sensor nodes measure

the power consumption of the machine components and

transmit it by radio. The physical network layer is based

on the IEEE 802.15.4 standard. 6LoWPAN allows IPv6

communication with the nodes. The nodes are synchro-

nized with the FTSP algorithm [7] and afterward the data

is transmitted via a gateway-node to the OPC UA Server.

The data is saved with a semantic data model on the OPC

UA Server. This model features Value types, sensor lo-

cation, descriptions and historic values in a most uniform

way, to enable other system like MES systems for example

to acquire it afterwards for other purpose. The framework

outlines two operation phases. In the Learning Phase , the

machine must operate at normal state and the software is

learning the behavior. In the Operation Phase all data from

the previous phase is used, to compare it with the actual

data.

Learning Phase

The behavior models of the particular plant components

are trained in this phase. For this purpose, the model (and

its structure) is learned from the training data with as lit-

tle a priori knowledge as possible. This approach avoids

a complex manual configuration during the installation of

the monitoring system. Therefore, the installation effort

can be reduced so that anomaly detection approaches are

even possible where rule-based approaches are infeasible.

Furthermore the configuration errors and suboptimal con-

figuration are prevented with this approach.

Operation Phase

The next step is to determine whether simulation predic-

tions and measurements should vary significantly enough

to form an anomaly. The anomaly detection is based on

the model-based approach described before. Such an ap-

proach further requires little installation effort for new

plants as automatic training methods can be applied. For

the detection of anomalies there are several approaches

that gives reliable results. On values, which represents a

flow of fluids or cumulative values, the software is using

a linear regression approach in consideration of each state

of the learned model. When going to values that are rep-

resenting raw energy consumption, there are some differ-

ences to consider. Energy-data has much sharper slopes
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Figure 2. Experimental platform.

Figure 3. Learned movement data.

that make it unsuitable for a linear regression approach.

In [12] the introduced Kalman-filter is used to recognize

anomalies in energy data.

3 Proof of concept

Experimental platform

The construction of the experimental platform exists of

an active transport process (linear conveyor) and a passive

transport process (roadway). Figure 2 shows the physical

process. The work piece is represented by a metal ball.

The learned automaton from the experimental platform is

outlined simplified in Figure 5. The process flow starts

with lifting the metal ball at the bottom of the roadway by

the magnet. The linear conveyer lifts up the metal ball to

the dropping range and drops it. The transport process is

finished when the ball and the magnet are back in the left

position (bottom of the roadway) so that the next trans-

port process can start. The energy consumption and the

time duration for the whole process step depends on the

handover between the transport processes. The handover

between the roadway and the linear conveyor can not be

influenced by the process controller. The handover be-

tween the linear conveyor and the roadway is represented

by the dropping position. The transport process behavior

depends on the dropping position, the angle of the road-

ways, the ball acceleration etc.

Results

The system is able to learn a model of the normal behav-

ior as described in [6]. Additionally the automaton holds

Figure 4. Learned energy consumption data.

two continuous data types: (i) the data from the move-

ment of the magnet (Figure 3) and (ii) the accumulation

of the energy used by the magnet when switched on (Fig-

ure 4). Both data types were modeled via the mechanism

described in Section 2. The calculated adjusted R squared

over the learned data is roughly above 0.8. This shows

that the learned behavior equate with the original data. Af-

ter the implementation of the outlined requirements in the

next section, more detailed tests with the framework on

other types of industry machines and a comparable mea-

surement of the tests as F-measure are required.

4 Future Work

Noise handling

The learning algorithms or the data acquisition must cope

with noisy training data. Furthermore, noise distributions

may be trained in order to cope with disturbing noise in the

operation phase. Model learning requires in most cases a

compromise between different issues. A suitable trade off

between model complexity, amount of training data and

system noise must be considered.

Handling of simulation inaccuracies

The simulation models also come with a normal inaccu-

racy. This inaccuracy is mainly caused by the fact that

the models are at least partially learned, i.e. they are an

abstracted view onto the original observations. Since any

abstraction mechanism sacrifices precision for generality,

a specific degree of inaccuracy of learned models is to

be expected and must be taken into consideration for the

anomaly detection step.

5 Conclusion

This software architecture is able to acquire data from

multiple sources and use it for anomaly detection from

different data types. If industry machines do not use a

bus system, it is possible to extend those machines with a

wireless sensor system for data acquisition. The OPC UA

integration allows a very scalable vertical configuration of



Figure 5. Learned automata
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historical data X X X

energy data X X X

other relevelant data X O -

energy consumption X X X

energy balance X O X

energy consumption model X - X

related energy consumption X X -

predict energy consumption - X X

X needed/covered, O partially, - not needed

Table 1. Specification requirements com-

pared to the Framework

all inherited systems and if there are other components,

they can be easily integrated.

Hybrid automata are a reasonable choice for anomaly

detection in industrial systems, as they are able to cope

with the requirements described earlier. When going to

the ISO 50001 and the DIN EN 16247 this software ar-

chitecture is able to provide multiple task in the process

of certification and well beyond, as outlined above in Ta-

ble 1. When adapted to the concept of energy performance

outlined in the ISO 50001, this architecture is able to cover

the aspects of energy input, energy consumption and en-

ergy efficiency.
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