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Abstract—Cooperative cyber-physical systems (CCPS) are
driven by the tight coordination between computational com-
ponents, physical sensors and actuators, and the interaction with
each other over system bounds. The software development of
CCPS is getting more complex because of the tight integra-
tion, heterogeneous technologies, as well as safety and timing
requirements. Therefore, new engineering approaches, such as
model-driven development methods, are required, along with
communication architectures with self-* capabilities. Both will
support the developer in specifying such a system effectively
and efficiently. However, the application of such techniques for
the development of CCPS has not been addressed sufficiently
so far. This paper presents an experience report of developing
a cooperative delta-robot system that juggles a ball without
a central control or camera system. For the development, an
intelligent network architecture and model-driven development
method for CCPS are applied.

I. INTRODUCTION

Cooperative cyber-physical systems (CCPS) require a tight
combination of and coordination between computational com-
ponents and physical devices. As a result, they are able to
sense their environment, to take “intelligent” decisions, and
to interact with their environment. CCPS have to interact
and coordinate with each other over system bounds to ful-
fill advanced tasks. Accordingly, the tight coupling between
controlling and controlled components is broken-up and com-
plex communication sequences over networks must handle
the coordination. Therefore, the CCPS development requires
interdisciplinary teams composed of system, software, control,
and communication engineers.

The adoption of reconfigurable manufacturing systems
(RMS) in industrial automation is one example of CCPS. To
react fast and cost-effective on new challenges, a RMS shall
allow the adding or removing of modules and machines from
the production process with none or little manual configuration
effort. As a result, the process has to reconfigure itself after
each physical modification. The general approach in research
to realize such systems is based on the modularization of
production systems in distributed, autonomous, and intelligent
objects. Therefore, methods and components from the infor-
mation technology merge with traditional automation devices.

In order to reduce the manual setup efforts to enable RMS,
such systems require self-configuration capabilities [1].

In this paper, we focus on the software development of such
systems. For example, applications use coordination protocols
that negotiate the message-based interaction between system
parts. Moreover, received messages influence the reference
values of continuous controllers that use advanced algorithms
and control physical actuators. Further, applications are bound
to physical laws like communication delay, but have to fulfill
safety and hard real-time requirements. Additionally, the usage
of heterogeneous technologies by discipline-spanning develop-
ment teams result in a challenging development process. To
cope with these challenges, new engineering approaches, such
as model-driven development methods, are required, along
with network architectures which are able to reconfigure them-
selves. The self-configuration capabilities are necessary for a
simple integration of the application and the communication
layer. By today, both layers are strongly coupled – especially
in the field of real-time communication systems where the
application developer has always to configure the real-time
network simultaneously. To handle the complexity of CCPS,
an application development without considering the underlying
network technology is desired. As a result, the developer only
needs to formulate the requirements on the communication
system. Afterwards, the communication layer configures the
network automatically with respect to the specified demands
and provides an appropriate communication channel to the
application.

However, the application of such techniques for the de-
velopment of CCPS has not yet been addressed sufficiently.
Especially, there are very few examples for the develop-
ment of CCPS in closely collaborating, discipline-spanning
development teams who are using a common architecture
and discipline-specific development methods. One example
for an existing report by Derler et al. [2] describes how to
model a fuel management system of an aircraft with Ptolemy.
Another report by Zhang et al. [3] elaborates on how to
develop a robot car. However, both reports do not address the
challenges of discipline-spanning teams, cooperative behav-
ior, and a real-time network architecture. Ricken and Vogel-
Heuser [4] discuss the challenges of interdisciplinary devel-
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opment for manufacturing systems, but do not consider that
manufacturing systems need an underlying intelligent network
architecture. Other research activities address only partially the
technical challenges for developing CCPS. The existing work
can be mainly categorized in two classes, component-based
development methods for the application layer and real-time
communication networks with self-configuration capabilities.
State of the art component-based development methods [5]
define the meaning of a component and the reason of the
operations construct, compose, and deploy on components [6].
Self-configuration capabilities in order to provide plug-and-
play (PnP) functionalities were already the objective of several
research papers [7].

The key novelties of our approach include the tight integra-
tion of a model-based software engineering approach with an
industrial-scale control engineering development method [8].
Moreover, an underlying real-time communication network
with self-configuration capabilities provides the required flex-
ibility for CCPS. In contrast to other approaches, our verifi-
cation and simulation techniques allow the analysis of mod-
els supporting reconfiguration. Timing constraints as well as
a time-dependent asynchronous message-exchange including
message loss, message delays, and several message buffers
with replacement policies can be considered.

In the German research project ENTIME1 and the suc-
ceeding project it’s OWL2, we created and evaluated methods
for the design of (industrial) CCPS. Both projects have a
close collaboration between research and local industry. Within
these projects, test beds for CCPS have been developed.
One of them consists of two cooperating delta robots that
juggle a ball by passing it to each other. The cooperating
delta robots have parallel manipulators that are often used
for pick-and-place applications in manufacturing systems. The
system is comprised of two identical, autonomous robots,
which are equipped with a movable racket on their tool-center-
points. The rackets are used to strike the ball. Fig. 1 shows
the physical construction of the cooperating delta robots. In
contrast to similar systems, no optical sensors are used to
detect the ball. As a resulting challenge, the striking robot
has to simulate and predict the ball flight trajectory. Three
piezo force sensors under each racket plate constitute the only
source of information to enable stable playing. This denotes an
ambitious control task, which requires model-based observers.
Another challenge is that no central control unit for both robots
exists. Thus, the robots have to coordinate with each other via
an intelligent network architecture considering hard real-time
requirements. Therefore, the robots shall exchange messages
with information about the current gaming strategy and a
prognosis for the next strike. To summarize, the cooperating
delta robots are a representative of a new class of CCPS
that lead to new requirements on a systematic design process
considering different disciplines.

The contribution of this paper is an experience report
about the application of an intelligent network architecture
on the software of the cooperating delta robots. We describe
how we have used our method in a discipline-spanning team,
the challenges we had to cope with and the lessons that we

1http://entime.upb.de
2http://t.co/AKfVwUpOxV
3http://twitpic.com/d1u0gh
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Fig. 1. Cooperating Delta Robots3

have learned. By taking our experience into account, other
discipline-spanning teams from industry and academics can
improve their efficiency and the quality of their resulting CCPS
software.

The remainder of the paper is structured as follows: The
next section provides relevant background in the area of model-
driven engineering methods and real-time communication net-
works. Section II summarizes our intelligent network architec-
ture that addresses the requirements of CCPS with hard real-
time tasks. Afterwards, in Section III, we describe the software
development of the cooperating delta robots and discuss our
experiences in Section IV including the faced challenges and
our lessons learned. Finally, the paper concludes with its main
findings and provides an outlook towards future work.

II. INTELLIGENT NETWORK ARCHITECTURE FOR CCPS

An intelligent communication network is one of the en-
ablers for CCPS. Hence, a software architecture for CCPS has
been specified [9]. Fig. 2 shows the architecture that follows
a layered approach. The architecture has the main objective
of providing services for a self-configuration of the real-
time communication network and to decouple the application
from the communication network. Therefore, three architec-
tural layers have been defined: application, middleware, and
connectivity.

A. Application Layer

The application layer provides the required functionality
for the system. It consists of a set of application components
that is an abstraction of the real application structure. A com-
ponent has its own activities and an active discrete or continu-
ous state. Every component has an interface description. This
description has a syntactic part that defines which messages
or signals may be sent and received. Further, the description
has a semantic part that describes the meaning of the signals
and messages as well as quality-of-service requirements. The
semantic description is a basic requirement for implementing
a self-configuration. For instance, the semantic description of
a simple temperature sensor could include the measured unit
and its range.

B. Middleware Layer

The middleware layer is responsible for decoupling the
application layer and the underlying connectivity layer as well
as selecting a suitable communication technology. It offers a
standardized communication interface to the application, inde-
pendent of the underlying real-time communication systems.
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Fig. 2. Intelligent Network Architecture for CCPS

The middleware consists of several services being responsible
for application data exchange and self-configuration of the
nodes. For the exchange of data, the middleware has to select
a suitable communication technology, which is able to meet
the application requirements. The requirements are described
within each application component and are provided to the
middleware via a standardized interface. The core component
for the self-configuration is a discovery service, which allows
to discover other existing nodes and to recognize their seman-
tics. For both functionalities, it requires an ad-hoc commu-
nication channel as described in Section II-C. An example
bootstrapping would consist of three steps: (i) discovery of
other nodes, (ii) configuration of the real-time communication
systems, and (iii) the logical interconnection of application
components to their relevant peers. After these steps are com-
pleted, the routing block is responsible for selecting valid paths
to exchange information between different systems, especially
if several real-time communication systems are used.

C. Connectivity Layer

The connectivity layer is capable of providing different
real-time communication channels depending on the require-
ments of the application. They are used to exchange process
data of the application with deterministic temporal boundaries.
Besides real-time traffic, it is also possible to exchange best
effort traffic, which is used for any non-critical data such as
monitoring data or network management data. The connectiv-
ity layer also provides an ad-hoc communication channel. As
soon as a new CCPS is physically connected to the network,
the ad-hoc channel is automatically established and can be used
to exchange configuration data during the bootstrapping phase.
Moreover, depending on the requirements of the application,
the connectivity layer is able to offer various communication
technologies ranging from deterministic wired hard real-time
communication systems to wireless technologies providing
only soft real-time guarantees.

III. DEVELOPING THE SOFTWARE OF THE COOPERATIVE

DELTA ROBOTS

In the following, we report about our development of
the software of the cooperative delta robots by applying our
intelligent network architecture for CCPS. At first, we define a

conceptual design to check the feasibility of the system and to
retrieve requirements on the software. Afterwards, we develop
the application layer, before developing the middleware and
the connectivity layer.

A. Conceptual Design

In this stage, we built up idealized simulation models of the
dynamics in order to be able to evaluate the principle feasibility
of the concept. Therefore, models that represent the physical
principles of an abstract technology are necessary. We use the
idealized model of the system to design the first controller
concept. Herein, we define the height of the ball trajectory
to be the controlled variable. In addition, the distance of the
point of impact from the racket center is controlled to zero. The
robot that strikes gets to know the actual position and velocity
of the ball by evaluating the measured forces at the time of the
contact. Feeding a model-based observer with this information,
it calculates a prognosis of when and where the ball will reach
the other robot. The robot sends this prediction to the other
robot. As a result, the receiver robot can compute a strike
trajectory and thus can strike the ball properly. Considering
the distance between the two robots, the minimum height of
the ball trajectory, the gravity on earth, and the time needed
for the alignment of the receiver’s plate, the maximum allowed
time for the transmission of the prognosis is 336 ms [10].

B. Application Layer

We define the software of the application layer using
MECHATRONICUML [11] which is a software engineering
method that is especially designed for developing this soft-
ware. MECHATRONICUML is model-driven. That means it
uses models for the whole development process from the
requirements to the source code and supports the developer
with automatic transformation to combine the different de-
velopment phases. MECHATRONICUML provides a domain-
specific modeling language that enables formal verification of
the discrete-event application parts via timed model checking.

For specifying the structure, MECHATRONICUML pro-
vides instantiable software components that define ports as
interaction points. Ports that are connected can exchange infor-
mation, e.g., discrete-event ports may exchange asynchronous
messages. MECHATRONICUML enables to define contracts
called Real-Time Coordination Protocols for defining, which
messages may be sent and received under hard real-time
requirements via discrete-event ports. The semantics of these
protocols is defined by so-called Real-Time Statecharts (a
combination of UML state machines and timed automata).

Considering our cooperating delta robots, Fig. 3 shows an
extract of the component structure of the application layer.
Here, the discrete-event ports of two instances of software
component RobotSW are connected to each other over the pro-
tocol ExchangePrognosis. It is used while the game is active
and coordinates that after each strike, the prognosis for the next
strike is calculated and sent to the other robot. Furthermore,
ExchangePrognosis specifies the real-time requirements that
we defined in the conceptual design phase, e.g., it specifies
that r1 has at most 3 ms of computation time after strike
before sending the prognosis and that r2 at most 151 ms of
computation time after receiving the prognosis before its strike.



Real-Time Coordination Protocols make assumptions con-
cerning the quality-of-service of the port connector. In our
case, ExchangePrognosis assumes the following: (i) the maxi-
mum message delay from application layer to application layer
is 336 ms, (ii) all messages eventually arrive to the receiver,
(iii) messages are not reordered, (iv) no message is delivered
twice, (v) corrupted messages will not be delivered, (vi) man-
in-the-middle attacks are not possible, and (vii) the sender
and the receiver can synchronize their system time with a
precision of a few milliseconds. As long as all assumptions
are fulfilled, we can formally verify our protocols via timed
model checking, e.g., we can prove that there will never be a
deadlock within the message exchange.

The component model of MECHATRONICUML enables
to specify continuous-time as well as discrete-event software
components such that control and software engineers have
one common model with clearly defined interfaces. In par-
ticular, continuous-time components represent controllers that
are developed by the control engineers. Such components
contain continuous ports that transfer signals of a specific
data type, e.g., Real, or Integer values. In contrary, discrete-
event components are developed by software engineers. Their
component behavior is defined in a state-based manner using
Real-Time Statecharts and may be formally verified, e.g.,
via timed model checking. Discrete-event components contain
the already mentioned discrete-event ports for exchanging
messages as well as so-called hybrid ports that transfer time-
continuous signals values into sampled local variable values.
Thus, hybrid ports can be connected to continuous ports of a
continuous component.

We show the internal software structure of a cooperating
delta robot in the right side of Fig. 3. It contains the discrete-
event component CoordinationModule that is able to exchange
messages with other discrete-event components. The Coor-
dinationModule adheres to the protocol ExchangePrognosis.
As a result, both robots can coordinate the exchange of the
prognosis. CoordinationModule is connected via hybrid ports
to the continuous components BallDetection, StrikeControl, and
LocalRacketControl. Thus, CoordinationModule can send or
receive new prognosis data for the transmission to or from
the other robot and can send or receive input values for the
controllers. The component-based structure has the benefit
that parts of the software can be easily exchanged. The clear
separation between event-discrete components and continuous-
time components has the advantage that safety properties for
event-discrete components can be proved via timed model
checking. Moreover, the clearly defined interfaces between
the discrete-event and continuous-time components can reduce
misunderstanding of the disciplines.

C. Middleware and Connectivity Layer

As shown in Fig. 3, the top-level components of both the
robots are using ports to communicate with each other. The
behavior of the ports is restricted by Real-Time Coordination
Protocols. However, these protocols describe the platform
independent communication process that assumes certain prop-
erties of the platform dependent network architecture.

In this architecture, the middleware is responsible for
the real-time delivery of messages between the ports of
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distributed software components. Therefore, the middleware
accepts messages from a port, transforms the messages accord-
ing to the underlying real-time capable network, and finally
transmits them. The details of this process are described as
follows. The basis of the communication process is a real-
time data exchange between the components. Here, real-time
Ethernet (RTE) is used, because it will be mainly deployed
in future automation systems [12]. RTE is a general term
for different communication network standards like Profinet
IO, EtherNet/IP, or EtherCAT. However, the advantage of
real-time communication is at the expense of an increased
manual configuration effort for these systems. To overcome
this disadvantage the architecture includes a self-configuration
mechanism for Profinet IO. A detailed description of this self-
configuration mechanism is provided in [1].

Each port owns a semantic description as well. When the
middleware of robot 1 receives an ExchangePrognosis with a
send-attribute, its discovery block scans the network for the
appropriate counterpart – i.e. a port which can receive this
message type. The semantic descriptions of the available ports
are retrieved by OPC UA over the ad-hoc channel. We provide
more details of the discovery process in [9]. The latency of
a Profinet IO system (from a controller to a device) in an
installation with line topology – which is very common in
industrial manufacturing systems – can be expected to be less
than 35 ms [13]. The delay of the middleware components is
smaller than 10 ms. So, the ExchangePrognosis message
reaches the other robot within the maximum transmission time
of 336 ms. In conclusion, we have successfully applied our
model-driven development method and the network architec-
ture to our example of the cooperating delta robots. However,
we still have to improve the quality of our detection of the ball
position by piezo force sensors. Currently, we only support
seven strikes per game as the ball detection does not consider
the stiffness of the racket plate. As the mass of the ball is
small in comparison to the mass of the plate, it is difficult to
detect the ball position on the plate. Small variances influence
the precision of the model-based observer and the prognosis.
As a result, the cooperating delta robots currently drop the ball
after several strikes.

IV. EXPERIENCE

In the following, we state the challenges we have faced
and the lessons that we learned while developing the software
of the cooperating delta robots in the context of the ENTIME
and the it’s OWL projects.



A. Software Developing Challenges

The development of CCPS gets more complex because
of such advanced cooperation and control behavior. In our
opinion, their development has to face the following five
challenges that extend and refine the modeling challenges
presented by Schäfer and Wehrheim [14].

(I) The application architecture gets more complex because
it has to monitor the sensors, analyze the sensor values, plan
appropriate actions, and execute them by controlling the actu-
ators. The application consists of several software components
that handle these different tasks. Properties of sensors, actu-
ators, and ports influence how the application architecture is
being built. “This concerns, in particular, timing aspects which
must be specified in the model as well, to be able to analyze the
system model appropriately and to fully automatically generate
code from the model specification.” [14]

(II) The controller has to consider information from another
system and its control strategy. The information from the
other system could be available only at discrete points in time
and not continuously/sampled. In our example, the prognosis
message of the other robot has to arrive before the robot
calculates its strike trajectory.

(III) The (message-based) communication is getting much
more complex. The communication depends on physical
dynamics, calculations from the controller, environmental
changes, and the current internal state of the system. It is not
only important that the system works in a logically correct
way. In addition, the timing must be considered accordingly.
Therefore, such interacting systems and distributed control
loops must be able to rely on real-time communication net-
works to coordinate and control their complex and time-
dependent behavior. In our example, the maximum message
delay depends on the minimal ball flight duration.

(IV) While developing the system, control engineers have
to consider different system parts like the application and the
underlying communication infrastructure. In our example, the
distributed control has to handle long dead-times as a result of
the event-based sensoring and the communication delay, which
may lead to a decreased performance of the control loop.

(V) A discipline-spanning collaboration between software
engineers, control engineers, and communication engineers
is required to develop these CCPS. The software engineers
develop the application architecture and the coordination be-
havior, the control engineers develop the controller concept,
and the communication engineers provide the concept for
communication. Thus, the different engineers are expert for
their domain, but do not necessarily have a holistic understand-
ing of the system. A system engineer might have a holistic
understanding, but lack discipline knowledge.

B. Lessons Learned

Considering the software architecture, all three intelligent
network layers must be considered from the beginning. Addi-
tionally, the interfaces and assumptions within each layer are as
important as the interface and assumptions between the layers,
e.g., the quality-of-service assumptions of the application layer
that the underlying layers have to fulfill. The middleware
and connectivity layer fulfill these assumptions and allow a

decoupling of the application and the real-time communication
system.

A discipline-spanning development process like the one
of Heinzemann et al. [15] improves the efficiency of the
development. Before developing the software, a conceptual
design phase where all disciplines participate is important,
e.g., to identify additional real-time requirements. Moreover,
early simulations via idealized models help to determine the
feasibility of the system and to identify requirements imposed
by the environment.

Considering the project management, it is important that
the engineers can use the languages and tools of their own
discipline. Small task forces should be established where each
participant represents one discipline and one system engineer
that moderates. These task forces need to meet often and have
to document decisions and reasons that led to these decisions.
To force progress, the project manager needs to define hard
regular deadlines. Team building exercises help to reduce
prejudices against other disciplines. Training the engineers
helps but does not necessarily imply that all engineers follow
the process and architecture. One good training method is to
review successful projects. In our opinion, adhering to these
lessons helps to improve the development of a CCPS but is
no silver bullet. Some of these lessons confirm general project
management guidelines.

V. CONCLUSION

This paper presents an experience report on the devel-
opment for CCPS using two cooperating delta robots as an
example. Due to the tight integration of different system parts,
the development process of such systems is very complex.
Hence, model-driven development methods, as an engineering
approach, have been deployed. In combination with a new
intelligent network architecture with self-configuration capabil-
ities, an interdisciplinary team of engineers was able to specify
and develop the system in an efficient way.

Engineers need to consider the identified challenges during
the software development of a CCPS. The tight coupling
of different parts within a CCPS and heterogeneous require-
ments from different disciplines makes the development more
complex than the sum of its parts. This challenge is also
known as emergence [16]. New insights after completion of
this work are the necessity to consider all three intelligent
network layers from the beginning. Moreover, a discipline-
spanning development process increases the efficiency and
avoids time consuming and costly iterations in the final phase
of the project.

Currently, the implementation and integration of all system
components of the cooperating delta robots is the result of the
first iteration. Future work will incorporate the lessons learned
into the development process of all different engineering
disciplines, leading to a further improvement of it. Another
important aspect of our future work will be the evaluation
of the whole system in specific case studies. This will lead
to a validation of the system with respect to the identified
requirements.
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[14] W. Schäfer and H. Wehrheim, “The Challenges of Building Advanced
Mechatronic Systems,” in Future of Software Engineering, ser. FOSE
’07. IEEE Computer Society, May 2007, pp. 72–84.

[15] C. Heinzemann, O. Sudmann, W. Schäfer, and M. Tichy, “A Discipline-
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