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Abstract—This paper presents a novel modular fuzzy pattern
classifier design framework for intelligent automation systems,
developed on the base of the established Modified Fuzzy Pattern
Classifier (MFPC) and that allows designing novel classifier mod-
els which are hardware-efficiently implementable. The perfor-
mances of novel classifiers using substitutes of MFPC’s geometric
mean aggregator are benchmarked in the scope of an image
processing application against the MFPC to reveal classification
improvement potentials for obtaining higher classification rates.

Index Terms—Fuzzy systems, image processing, fuzzy pattern
classification, automation, machine learning, artificial intelli-
gence, pattern recognition.

I. INTRODUCTION

Automation techniques such as image processing or ma-
chine vision—or generally speaking signal processing—and
pattern recognition are applied in industrial production pro-
cesses (e.g. for quality inspection) as well as in consumer
products like compact digital cameras (e.g. for face recog-
nition) and are getting more and more important these days.
The reasons are diverse, but mainly processes are automated to
reduce costs, improve production quality, handle large amounts
of data or just for the sake of convenience.

In order to bring “artificial intelligence” into automation
systems, they need to gain knowledge about their applications
by human-centric learning techniques, often incorporating
Fuzzy Logic (based on Lotfi A. Zadeh’s work about Fuzzy Set
Theory [1]) to represent the information and make decisions
based on them.

Established as decision-making instrument in the field of
industrial automation processes is the Modified Fuzzy Pattern
Classifier (MFPC) introduced by Lohweg et.al. [2]. It has
proven its performance and robustness in this area, even
in applications where the inputs are noisy or vary in their
values. The focus of this paper lies on industrial image
processing applications where certainty in decisions and real-
time demands are critical. The latter implies hardware-efficient
implementations which is fulfilled by the MFPC. Although,
the MFPC model is well suited for a lot of applications, it
is questioned if this models is actually the best for these
applications.
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Fig. 1. Sample training images of twelve digit classes (0 – 9 (cf. (a) – (d))
plus modified 4 and 7 (cf. (e) and (f))). Figures (g) – (j) show samples of the
test images.

This paper introduces a novel modular classifier design
framework based on the principles of the MFPC. It can be used
to develop and apply classifiers—which retain to be easy and
efficiently implementable—to achieve the best performance
for a specific application. A series of novel classifier models
are designed and their performances are benchmarked against
the performance of the original MFPC in the scope of an
image processing application to disclose MFPC’s improvement
potentials.

The application is about optical character recognition where
the printing of dot-matrix printed digits is checked during
a production process. The test case includes images taken
from twelve classes of digits, being all digits from “0” to
“9” plus one class of modified “4” and “7”, respectively.
A total of 746 images (or objects) to be classified are used
during the test phase. Which class an image belongs to is
unknown to the classifier, but known to the user. Compared
to the images used to train the classifier (cf. Fig. 1 (a) – (f)),
the test images (cf. Fig. 1 (g) – (j)) are not so homogeneous
due to distortions during printing, which gives an impression
how well a classifier needs to perform and how robust against
disturbances it must be.

The paper’s structure is as follows: Section II introduces
the concepts of Fuzzy Pattern Classification the MFPC relies
on. In Sect. III the aggregation operators used to substi-
tute MFPC’s aggregation operator are described before the
hereby created novel classifiers are evaluated and benchmarked
against the MFPC in Sect. IV. The paper ends with Sect. V



by providing a conclusion and an outlook.

II. FUZZY PATTERN CLASSIFICATION

Fuzzy Pattern Classifiers (FPC) [3], which were originally
developed by Bocklisch, basically “look” at an object and sort
this object into a class known to the classifier. This is done
by comparing a feature vector m, extracted from an object
under inspection, to features of a typical member of a class.
In fact, while m = (m1,m2, . . . ,mM ), mi ∈ I ∀i, is a
vector of M crisp values, the features of a typical member
of one class are fuzzy variables represented by membership
functions �i : I → I ∀i ∈ ℕM , where I denotes the
closed unit interval of real numbers [0, 1] and ℕM the set
of natural numbers {1, 2, . . . ,M}. Each extracted feature mi

of the feature vector m serves as input for the membership
functions. The resulting membership values �i(mi) can be
interpreted as similarity of feature mi compared to the same
feature of the typical class member. The membership values
are then aggregated by the classifier to result in one single
membership value �(m) ∈ I for the complete object under
inspection. In formal descriptions of a classifier, both parts—
the fuzzy membership functions and the aggregation part—
may not appear explicitly. The formal description of the
Modified Fuzzy Pattern Classifier, for example, looks like a
single membership function (cf. (3)), nevertheless also the
aggregation part is present.

A. Modified Fuzzy Pattern Classifier

Lohweg’s Modified Fuzzy Pattern Classifier (MFPC) [2]
is—as its name implies—a derivate of Bocklisch’s Fuzzy
Pattern Classifier (FPC), optimized for hardware implementa-
tions. MFPC’s general concept of simultaneously aggregating
an arbitrary number of unimodal membership functions to
compute an overall membership value is borrowed from the
original FPC. Lohweg’s intention—leading to the MFPC in the
form of (3)—was to create a pattern recognition system on a
Field Programmable Gate Array (FPGA) that can be applied in
high-speed industrial applications [2]. This section introduces
the MFPC and derives its properties, which are the base for
all further investigations.

The fuzzy membership function � : I → I used for
the MFPC is Eichhorn’s parameterizable unimodal potential
function [4]

�MFPC (m,p) = 2−d(m,p) ∈ I (1)

with d (m,p) =

(
∣m− S∣
C

)D
.

p = (S,C,D) is a parameter vector defining the membership
function’s properties, namely mean value (S), width (C) and
steepness of its edges (D), which increases with increasing D.
d (m,p) computes the distance or dissimilarity of the feature
m to the membership function’s mean value S, thus to an ideal
member of a class. A sample MFPC membership function is
depicted in Fig. 2.

The MFPC membership function’s parameters are obtained
automatically during a learning phase. During this phase, the
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Fig. 2. Sample MFPC membership function at D = 2 and pCe = 0
(solid). The upper and lower plot show changes (dashed→ dash-dotted) with
increasing pCe and D, respectively. The vertical dotted line shows respective
S ± C, the bold-dotted line S.

features mi are extracted from N typical members of a class.
For each feature, the parameters are then calculated as [2]

S = Δ +mmin, C = (1 + 2pce) ⋅Δ (2)

with the arbitrary width adjustment factor pce ∈ I (called
percental elementary fuzziness) and where

mmax =
N

max
i=1

mi, mmin =
N

min
i=1

mi, Δ =
mmax −mmin

2
.

D is an arbitrarily chosen integer for which Lohweg proposes
a power of 2 to keep calculating the distance measure d (m,p)
hardware-efficient, typically limited to D ∈ {2, 4, 8, 16}.

MFPC’s ability to simultaneously calculate membership
values and aggregate them is expressed as an aggregation
function ℎ : In → I by [2]

ℎMFPC (m,p) = 2−
1
M

∑M
i=1 di(mi,pi) (3)

with di (mi,pi) =

(
∣mi − Si∣

Ci

)Di
for M different features. The feature m in (1) has actually
become a feature vector m, and p is no more only a vector
but a matrix of parameter vectors pi, parameterizing each
membership function belonging to every feature mi. Since the
MFPC aggregates fuzzy membership functions, it can be seen
as a fuzzy aggregation operator. Its properties are derived in
the following.

1) MFPC as Averaging Operator.: To show the aggregation
character of the MFPC, its formal description (3) is rewritten



to

ℎMFPC (m,p) =

(
M∏
i=1

2−di(mi,pi)

) 1
M

=

(
M∏
i=1

�MFPC,i(mi,pi)

) 1
M

. (4)

Equation (4) shows that MFPC aggregates its membership
functions �MFPC,i using the geometric mean operator defined
as ℎGM(a1, a2, . . . , an) = (

∏n
i=1 ai)

1
n . The geometric mean

actually is an averaging operator, thus also the MFPC is
an averaging operator. Equation (4) shows additionally that
MFPC’s aggregation operator can be isolated and therefore
be substituted by any other operator. Nevertheless, to retain
the classifier’s aggregation character of being an averaging
operator, the aggregation operator’s substitute must be an aver-
aging operator, too. The investigated substitutes are described
in Sect. III.

2) MFPC’s Andness and Orness.: Averaging operators are
situated between the min (or pure AND) operator and the max
(or pure OR) operator [5]. Depending on the chosen averaging
operator, its aggregation behavior may be more ANDlike or
more ORlike. This characteristic behavior can be expressed
by the degrees of andness � and orness !, respectively.

Dujmović’ measures of global andness �g and orness !g
for a general averaging operator ℎ(a) with a ∕= (0, . . . , 0) are
defined as [6]

�ℎ(a)g =
max(a)− ℎ(a)

max(a)−min(a)
, !ℎ(a)g = 1− �ℎ(a)g (5)

where g(a) is the expected value of g(a), defined by g(a) =∫
In
g(a)da for a ∈ In.

Dujmović and Larsen applied (5) and found geomet-
ric mean’s global andness for n = 2 and n → ∞—
thus its boundaries—to be �ℎGM

g (2) = 2
3 ≈ 0.667 and

limn→∞ �ℎGM
g (n) = 1− 1

e ≈ 0.632, respectively [6].

III. FUZZY AGGREGATION OPERATORS

The preceding Sect. II showed that the MFPC aggregates
using the geometric mean aggregation operator. Due to its
fixed andness of around 2

3 for a fixed number of param-
eters, the MFPC is less flexible than e.g. Yager’s class of
Ordered Weighted Averaging (OWA) operators [7]. Since the
aggregation operator is isolated in MFPC’s re-definition (4),
it is possible to substitute it with a different aggregation
operator. Two substitute candidates (amongst many others) are
the aforementioned class of OWA operators and also Larsen’s
class of Andness-directed Importance Weighting Averaging
(AIWA) operators [8]. Both are parameterizable to have a
desired andness and both do not have geometric mean’s
mandatory property [6] resulting in an aggregated value of
zero or close to zero if at least one of the values to be
aggregated is zero or close to it, which might be problematic in
classification applications. The operators are briefly described
in the following subsections.

A. Ordered Weighted Averaging Operator

Yager introduces a class of aggregation operators called
Ordered Weighted Averaging (OWA) operators [7]. The ag-
gregation of n features a = (a1, . . . , an) is defined by

ℎOWA(w,a) =

n∑
i=1

(
wi ⋅ a(i)

)
, (6)

where w = (w1, . . . , wn) is a vector of positional weights,
called OWA weights, with wi ∈ I and

∑n
i=1 wi = 1; (⋅)

denotes a permutation of a on ℕn such that a(1) ≥ ⋅ ⋅ ⋅ ≥ a(n),
thus sorts the vector’s elements in descending order.
w determines the operator itself, thus the operator’s andness

�ℎOWA
g . The OWA weights wi can be obtained by applying a

regular increasing continuous quantifier function ' : I → I
satisfying (1) '(0) = 0, (2) '(1) = 1 and (3) x1 < x2 ⇒
'(x1) ≤ '(x2). For dimension n ≥ 2, the OWA weights are
obtained by wi = '

(
i
n

)
−'

(
i−1
n

)
, i ∈ ℕn [9]. One class of

functions satisfying the quantifier functions’ conditions is the
class of regular monotonic quantifiers, defined by '�(x) =
x� [9]. Thus, the OWA weights are obtained by

wi =

(
i

n

)�
−
(
i− 1

n

)�
, i ∈ ℕn (7)

with � =
�Q

1− �Q
∈ [0,∞) , �Q ∈ [0, 1] ,

with �ℎOWA
g (w) = 1−

(
1

n− 1

n∑
i=1

[(n− i) ⋅ wi]

)
, (8)

where �Q, called quantifier andness, is an estimator of the
OWA operator’s (real) andness �ℎOWA

g (w) [7]; notice that (8)
is completely consistent to (5) [6].

There is actually a difference between �Q and �ℎOWA
g due

to �Q’s independence from dimension n, while �ℎOWA
g —

defined by w—depends on n (cf. Equation (8)). This demands
adjustments of �Q to obtain an OWA operator with the desired
(real) andness �ℎOWA

g .

B. Andness-Directed Importance Weighting Averaging Oper-
ator

The class of Andness-directed Importance Weighted Av-
eraging (AIWA) operators by Larsen [8] is based on the
power means [10] and extends these to incorporate also
importance weighting of the arguments. AIWA aggregation
of a = (a1, . . . , an) is defined as

ℎAIWA(v,a) =

⎧⎨⎩
(∑n

i=1(vi⋅ai)
∑n

i=1(vi)


) 1


�∈(0, 12 ]

1−

(∑n
i=1(vi⋅(1−ai))

1
∑n

i=1(vi)
1


)
�∈[ 1

2 ,1)
, (9)

where  =
1

�
− 1,

with v = (v1, . . . , vn) being a vector containing importance
weights which satisfy vi ∈ I and is maximum-normalized
to 1, i.e. maxni=1 vi = 1. If weighting is not required, an



TABLE I
CLASSIFICATION RATES r+ FOR EACH CLASSIFIER AT ANDNESS DEGREES �g BY THE OPERATOR’S PARAMETERS �Q /� WITH REGARD TO MFPC

PARAMETERS D AND pCe .

Classifier D = 2 D = 4 D = 8 D = 16
�g �Q/� pCe r+ pCe r+ pCe r+ pCe r+

0.500 OWAℎMFPC 0.500 0.370 84.58% 0.370 87.80% 0.310 92.36% 0.290 92.90%
AIWAℎMFPC 0.500 0.370 84.58% 0.370 87.80% 0.310 92.36% 0.290 92.90%

0.560 OWAℎMFPC 0.557 0.405 84.58% 0.370 87.94% 0.305 92.49% 0.275 92.76%
AIWAℎMFPC 0.630 0.240 85.92% 0.270 90.21% 0.245 93.16% 0.265 92.76%

0.637 ℎMFPC — 0.155 81.77% 0.445 82.17% 0.755 82.44% 1.000 82.44%
OWAℎMFPC 0.630 0.215 84.45% 0.355 88.74% 0.305 92.63% 0.275 92.76%
AIWAℎMFPC 0.750 0.135 85.52% 0.185 89.95% 0.270 89.95% 0.315 89.95%

0.700 OWAℎMFPC 0.689 0.280 84.45% 0.335 88.87% 0.295 92.63% 0.275 92.63%
AIWAℎMFPC 0.820 0.430 82.71% 0.795 82.57% 1.000 82.31% 1.000 79.09%

unweighted AIWA operator is achieved by vi = 1 ∀i. To
estimate an operator with a desired andness degree �, the
operator’s parameter  is calculated by its equation given
in (9). As with OWA operators, AIWA operator’s real andness
�AIWA
g , as defined by (5), is dependent on dimension n and

thus different from the desired, dimensionless andness � which
implies adjustments of  until the desired andness �AIWA

g is
achieved.

IV. CLASSIFIER EVALUATION

The novel classifier models incorporate OWA and AIWA
operators, respectively, and are generated in a straightforward
way. Each argument ai is substituted by an MFPC membership
function �MFPC,i. Both classifier models, as applied here, are
nothing else than fuzzy mean operators since no importance
weighting is used. They are benchmarked against the perfor-
mance of the original MFPC applied in the scope of the optical
character recognition application described in Sect. I. For this
benchmark, all classifier models are implemented, executed
and evaluated in MATLAB using a classification framework
where the aggregation operator can be substituted easily.

Formally, the classifiers are expressed for the OWA opera-
tors and for the unweighted AIWA operators (⇒ vi = 1 ∀i),
respectively, by

OWAℎMFPC (w,m,p) =

n∑
i=1

(
wi ⋅ �MFPC,(i) (mi,pi)

)
, (10)

AIWAℎMFPC (v,m,p) =

1−

(∑n
i=1(1−�MFPC,i(mi,pi))

1


n

)
, for �∈[ 1

2 ,1). (11)

At dimension n = 17, thus aggregating 17 features, the ge-
ometric mean—and equally the MFPC—aggregation operator
has a global andness �ℎGM

g (17) = 0.637. The OWA and AIWA
operators are parameterized to have the geometric mean’s
andness and additionally some other andnesses to reveal their
effects on the respective classification performance. Since
these andnesses are from

[
1
2 , 1
)

(cf. Table I), (11) is given
just for this interval.

To assure that all classifiers have the same fixed base of
data to work with, all 17 used features are extracted only

once prior to classification, stored and not changed afterwards.
For each class, there exist 17 images which are used to
train the classifiers in the learning phase. During this phase,
all parameters needed to define the membership functions
�MFPC are determined. For benchmarking, the classification
rate r+ = n+

N and—its dual—error rate r− = n−
N = 1 − r+

of N objects to be classified are evaluated for each possible
value of MFPC membership function’s parameters pCe and
D; n+ and n− are the numbers of correct and incorrect
classifications, respectively. A classification is considered to
be correct if the highest membership value � belongs to the
correct class and if additionally � > 0.5. Table I summarizes
the classification rates of all classifier models. The table shows
that specific parameter pCe of the MFPC membership function
for which each classifier reaches its best classification rate r+
per parameter D, grouped by the operators’ andness degrees
�g . The best classification rate per group is printed bold. As
reference, the MFPC classification performance is shaded gray.

Actually, the MFPC is performing worst amongst all eval-
uated classifier models, any other model leads to higher clas-
sification rates. The exception of this statement is AIWAℎMFPC

at andness �g = 0.7. This is caused due to many objects
having membership values slightly below 0.5 and not being
considered as classified correctly. A special case can be noticed
at �g = 0.5. In this case, both aggregation operators, OWA and
AIWA, have completely identical properties and behave like
the arithmetic mean. Compared to the best MFPC classification
result, an improvement in classification rate of 10.72% can be
achieved using the AIWA operator at an andness of �g = 0.56
instead of using geometric mean aggregation for the described
application. �g = 0.56 is also the best in average, thus
geometric mean’s andness of �ℎGM

g (n = 17) = 0.637 tends
to be too high.

V. CONCLUSION AND OUTLOOK

In this paper novel fuzzy pattern classifier models are de-
rived based on the well established and studied Modified Fuzzy
Pattern Classifier. It is shown that the MFPC incorporates a
membership function and an aggregation operator, which is
isolated and replaced. The replacement revealed substantial
classification improvements. Other aggregation operators than
those applied here as well as importance weighting may lead
to additional improvements.



The investigantions presented shall be considered initial.
Hence, no general statements can be derived from these and
further experiments based on the initial findings are to be
conducted. Nevertheless, the experiments presented in here
lead the direction for further classification improvements, e.g.
incorporating importance weights for aggregation.

Worthwhile investigating in the future is the threshold of 0.5
for the aggregated value �, at which a classification is consid-
ered to be correct or not (cf. Sect. IV). Since operators with a
higher andness will have a lower aggregated value of the same
arguments, this should be taken into account by, e.g., setting
the threshold to the operator’s orness !g . Currently, the authors
are working on substitutes of MFPC’s membership function to
investigate classification rate improvements by replacing this
part of the classifier.
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