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Abstract—Future market conditions require production sys-
tems which can be easily adapted to changing demands. How-
ever, the engineering process of industrial automation systems
is characterized by high manual configuration efforts. Thus,
the reconfiguration of such system leads to time-intensive and
expensive downtimes. Therefore, this paper will present a concept
on reducing the engineering effort – at least on the lower layers
of the automation pyramid. Due to the real-time requirements
on these layers, specific communication technologies must be
used there – for example Real-Time Ethernets (RTEs) which
are increasingly applied in industrial automation. However, their
real-time capability is contrasted by an additional configuration
effort in comparison to standard networks from the information
technology domain. This paper will show an approach for the
automatic configuration of RTEs and will check its applicability
on the most widely-used RTE variants.

I. INTRODUCTION

The manufacturing industry is facing increasing competi-
tive pressure due to rapidly changing customer demands, short
product development cycles or fast changing technologies. So
the dynamic adaption of industrial production systems will
be one of the industry’s key challenges in the future [1].
Mehrabi formulates the new demands as follows [2]: ”The
manufacturing systems [...] must be rapidly designed, able
to convert quickly to the production of new models, able to
adjust capacity quickly, and able to integrate technology and
to produce an increased variety of products in unpredictable
quantities.”

Currently, the engineering process for automation systems
is characterized by high time-consuming manual configuration
efforts. For example, all devices present in the automation net-
work, their properties and the data to be transferred (including
the timing of the data) must be defined by an automation
engineer. Any modification of such a system requires an at
least partial manual reconfiguration. Therefore, the automation
engineering is a major obstacle on the way to future production
systems. Indeed, the development of new or modified engineer-
ing approaches reducing the configuration effort is a highly
relevant research topic [3].

By today, the concrete engineering steps differ according
to the respective hierarchy level of the automation system. An
overview of the different levels is given by the automation

pyramid in figure 1. At the field level sensors and actuators
are forming the interface to the controlled physical process.
At the control level Programmable Logic Controllers (PLCs)
read values from the sensors, process them and generate new
signals for the actuators. This process is repeated cyclically
and autonomously on the basis of a pre-defined control logic.
At the operations level the data of a plant is collected
and visualized, typically by Supervisory Control and Data
Acquisition (SCADA) systems. Finally, the enterprise level
performs the business administration like production planning
or material ordering. At this level standard computers and IT
technologies are used. From the communication aspect, the
levels differ in their need for real-time communication. This
has also impact on the engineering process: The higher the
real-time requirements, the more important the communication
engineering is.
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Fig. 1. Automation pyramid

The focus of this paper is on reducing the engineering
effort needed in the two lower levels – and here especially
on reducing the communication engineering. Whereas on the
operations and enterprise level standard IT networks and pro-
tocols like Ethernet and TCP/IP can be used, the transmission
path between sensor, PLC and actuator is part of a time-critical
control loop. Depending on the nature of the controlled phys-
ical process, the communication technology must fulfill high
real-time requirements. In general, three real-time classes can
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be distinguished in Ethernet-based industrial communication
[4]:

• Class 1: Data traffic on top of TCP or UDP, cycle
times of about 100 ms, used for engineering and for
process monitoring.

• Class 2: Data traffic on top of Ethernet’s media access
control (MAC) layer, cycle times 1 – 10 ms, used for
process control.

• Class 3: Synchronized data traffic on top of a modified
MAC layer, cycle times 250 µs – 1 ms, jitter less than
1 µs, used for motion control.

The requirements of classes 2 and 3 cannot be fulfilled
by Ethernet in conjunction with TCP/IP [5]. Therefore various
real-time adoptions to the Ethernet standard subsumed under
the term Real-Time Ethernet (RTE) have been introduced.
The fieldbuses of the first generation are currently replaced
or supplemented by RTE. The different RTE variants have
in common that the TCP/IP protocol family can be used
in parallel to the real-time data traffic. This opens up the
possibility of using the same network infrastructure from the
office and IT level down to the field level. However, as
described in section III-B, a high manual configuration effort
is needed to bring RTEs into a communication-ready state.
This is in contrast to IP-based communication in standard
Ethernet where the only prerequisite for an automatic start
of communication is a protocol for address assignment like
the Dynamic Host Configuration Protocol (DHCP). For this
reason the engineering effort for the integration of field devices
into the process control level comprises not only application-
related aspects, but also a significant level of communication
engineering.

This point leads to the main focus of this paper: The
development of methodologies for the automatic configuration
of Real-Time Ethernets. This topic represents a partial aspect
of the overall objective of reducing the engineering effort. This
paper is structured as follows: In section II related work is
summed up. An introduction to RTEs and their autoconfigu-
ration is given in sections III and IV. An analysis of the most
common RTE variants with respect to their suitability for the
autoconfiguration approach is carried out in section V. Based
on the results of the analysis, an autoconfiguration procedure
is presented in section VI. The paper ends with a conclusion
in section VII.

II. BACKGROUND AND RELATED WORK

The reduction of engineering effort in the domain of
industrial automation is a key aspect in many research projects.
In general, one can distinguish between approaches introducing
a completely new automation architecture and approaches
adapting existing structures.

An example of the first group is the proposal to use Service-
Oriented Architectures (SOAs) in the automation domain [6].
SOAs –a software design pattern originating from the IT
world– are based on services, each representing a certain
functionality. Applications in a SOA are built as a composition
of different services whereby each service exposes only its
functionality to other services, the implementation is not
visible from outside the service. Furthermore, all services are

loosely coupled: They operate independently from each other,
their interactions are stateless, asynchronous and not context-
related [7].

In the context of industrial automation the services repre-
sent the functionalities of individual field devices or production
modules. The behavior of the overall system is controlled by
the coordination of all services. Due to the loose coupling of
SOA-based automation components the reconfiguration effort
for modifying existing automation structures shall be mini-
mized – whilst in current systems all components are linked
to each other in a static manner which obstructs changes [8].
Even the initial setup of automation systems shall be simplified
by the use of SOAs [9].

On the communication layer almost all SOA solutions in
the automation domain either use the Devices Profile for Web
Services (DPWS) or the OPC Unified Architecture (OPC UA).
Comparative descriptions of both protocols can be found in
[10] and [11].

Beyond the communication aspect, the services must be
orchestrated to compose an automation process. Therefore
several approaches can be found in the literature: In the
European SOCRADES project and in its successor IMC-
AESOP formal methods and tools for the service orchestration
using High-Level Petri Nets have been developed [12]. In [13]
constraint satisfaction problem solvers are used to generate
production plans based on configuration and maintenance data
provided by services. However, these methods only support
the orchestration process – the actual composition must still
be performed manually. Approaches for the automated orches-
tration are using semantic annotations of services. Based on an
abstract process description, an orchestration engine searches
and connects the services whose semantic descriptions are in
compliance with the requirements of the abstract definition
[14].

Apart from the mentioned advantages, the SOA approach
lacks the support of real-time communication – especially of
the real-time classes 2 and 3. This is partly due to the fact
that the technologies used for the implementation of SOAs
do not target suitable real-time constraints [15]. Furthermore,
it is questionable whether the central SOA principle of loose
coupling is applicable to the field level of industrial automation
systems [7]. An alternative approach is the integration of well
established solutions for real-time communication like RTE
into SOAs. For example, the RI-MACS [15] and the iLAND
[16] projects suggest to extend a SOA by a dedicated real-
time channel. However, further implementation details are not
provided.

As mentioned, the main concern in using RTEs is the
necessary manual configuration – which is contrary to the in-
tended objective of reducing the engineering effort. Therefore,
methods for the automatic configuration of RTE are required.
Their field of application will not only be limited to SOA
environments – instead, RTE autoconfiguration mechanisms
can be the foundation for any attempts in simplifying or
automating the setup procedure in current automation systems.

There are already several attempts for an automatic config-
uration of RTEs. In [17] a procedure for the RTE Powerlink
is presented exploiting Powerlink-internal functions. A similar
approach is used for the autonconfiguration of Profinet IO in



[18]. In addition, that paper introduces the concept of an ”ad-
hoc channel” used for configuration purposes based on the non-
real-time channel of the RTE Profinet IO. It utilizes the SOA
technology DPWS for discovering devices and ascertaining
their capabilities. In [19] DPWS is replaced by OPC UA and
a mechanism for the autoconfiguration of modular Profinet IO
devices is presented. A similar concept is shown in [20].

However, the mentioned publications do not consider the
transferability or generalizability of their approaches. For
example, the ad-hoc channel concept is realized within the
RTE Profinet IO – it has not been checked whether it can
be adapted to other RTEs. Therefore, this paper will derive
general functionalities needed for RTE autoconfiguration. A
comparison of the most common RTE variants will check
how these functionalities can be realized within the individual
RTEs. Thereby, RTE-independent mechanisms should be used
so far as possible.

III. FUNDAMENTALS OF REAL-TIME ETHERNET

Real-time-capable fieldbus technologies were introduced
in the industrial automation about two decades ago. In the
meantime Ethernet and the TCP/IP protocol stack, which
both are non real-time-capable, have become the dominant
standards for local area networks in the home and office en-
vironment. Fieldbuses and Ethernet are not compatible and so
field devices could not be accessed from networks outside the
automation world. To overcome this barrier modified Ethernet-
based technologies are currently finding their way into the
industrial automation. The different real-time modifications,
which are not compatible to each other, are referred to as Real-
Time Ethernet (RTE).

A. Categories of Real-Time Ethernets

The key differentiator between all RTEs is the supported
real-time class. According to the defined classes in section I
RTEs can be divided into three categories which differ with
regard to their compatibility with Ethernet and TCP/IP (see
figure 2):

• Category A: Used for real-time class 1. Both non-real-
time (NRT) and real-time (RT) applications are based
on the TCP/IP stack and standard Ethernet. Example:
Modbus TCP.

• Category B: Used for real-time class 2. The TCP/IP
stack is omitted for RT data. This leads to significant
improvements of transmission times since studies have
shown that the major part of the end-to-end delay
occurs within the TCP/IP stack of network nodes [21].
On the hardware side, standard Ethernet devices can
still be used. Example: Profinet IO Class B.

• Category C: Used for real-time class 3. The TCP/IP
stack is omitted for RT data. Modified Ethernet com-
ponents (i.e. controller, switches) must be used. Exam-
ple: Profinet IO Class C, Ethercat, Ethernet Powerlink.

On the field level, only the categories B and C are relevant.
Category A RTEs will thus not be considered in the following.

Besides the supported real-time classes, RTEs differ in sev-
eral other aspects like throughput, media access, topology, time
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Fig. 2. RTE categories [22]

synchronization, addressing and the communication model.
A comprehensive overview can be found in [23]. According
to the issue of this paper, the focus of the descriptive RTE
comparison in section V will be on the RTE characteristics
which are relevant for the automatic configuration approach.

In order to be able to identify the relevant properties, the
general requirements on an automatic RTE configuration will
be derived in the next sections.

B. Engineering of RTE-based networks

RTEs are, as other industrial communications systems like
fieldbuses, used for process data exchange between an appli-
cation on the control level (typically process control software
executed by a PLC) and devices on the field level. Accordingly,
the communication structure of all considered RTEs consists
of one central node (called controller or master) coordinating
the data transfer to all other nodes (called IO-devices or
slaves). Usually the PLC performs the role of the controller
and the field devices represent the slaves. The engineering flow
currently needed for setting up RTEs is depicted in figure 3.
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Fig. 3. Engineering flow for RTE setup

The RTE commissioning process is assisted by an engi-
neering tool usually coming from the PLC manufacturer. The
automation engineer (in its role as the tool’s user) has the task
of providing all necessary information to the tool. Afterwards
it calculates the parameters needed by the RTE controller. The
individual steps are:

1) Network configuration. This step includes the iden-
tification of the installed RTE devices. Therefore, the
engineer must add RTE-specific device description
files (DDFs) of the devices present in the network to
the engineering tool. Furthermore he has to perform,
among other configuration activities, the address as-
signment as well as the specification of data cycle
times.



2) Process data assignment. Here, the engineer links
the communications objects of the control application
to the according objects of the field devices. For
instance, on the application side these objects can be
represented by variables and on the field device side
by input/output-registers.

3) Compilation. After gathering all information about
the network structure, the devices and the data to
transfer the engineering tool generates the detailed
communication parameters. The outcome of the com-
pilation are, for example, frame structures or a com-
munication schedule. The tool-internal compilation
process is part of the vendor’s intellectual property
and is not disclosed to third parties.

4) RTE controller upload. The compiled configuration
file from the previous step is uploaded to the con-
troller of the RTE – which in turn configures the other
RTE devices by using the information provided in the
configuration file. The file format and the interface
between engineering tool and controller are usually
proprietary.

These four steps allow the derivation of the requirements
on an automatic RTE configuration as it follows in the next
section.

IV. BASICS ON RTE AUTOCONFIGURATION

As mentioned in section III-B, four configurations steps
are necessary before real-time communication over an RTE
can be realized. The aim of the autoconfiguration approach
is to supersede these steps. At the end, the communication
engineering shall be performed completely by the autoconfig-
uration mechanism. This approach is similar to the ”Plug &
Play” functionality of the Universal Serial Bus (USB): When
an USB device is getting connected to a host, the bus will
be configured automatically and standardized communication
channels between host and device are established.

To reach a similar behavior in the case of RTE, the
manual RTE configuration must be automated. Therefore, on
the one hand, the autoconfiguration mechanism must clone the
functionality of the RTE engineering tool (see steps 3 and 4
of figure 3). On the other hand, the information traditionally
provided by the engineer (see steps 1 and 2 of figure 3) must
be gathered automatically. One possible architecture allowing
to obtain this information is shown in figure 4 [7].

Here, the information normally provided by the engineer is
collected by the discovery function block. According to figure
3, this information comprises the network configuration and the
process data assignment. The required network configuration
data (i.e. which devices are installed?) is RTE-dependent.
Which information is necessary in detail and how it can be
obtained for different RTEs is analyzed in section V.

For the automatic process data assignment, which is in-
dependent from the used RTE variant, the discovery block
must determine which variables belong to which field devices.
Currently, there are rare approaches for this problem. One
idea is based on the semantic self descriptions of control
application and field devices [7]. In that method the self
description of each field device contains information about the
device’s type. For example, a device measuring the temperature
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Fig. 4. Autoconfiguration system architecture

can identify itself as a ”temperature type sensor”. On the other
hand, all external variables of the control application must
be annotated by using according types – in this example the
variable would be described as a ”temperature type variable”.
Then, the discovery block compares the self descriptions of
the control application and the field devices and connects the
temperature variable to the temperature sensor. It should be
noted that this approach needs a common type ontology used
for the description of the control application as well as of the
field devices. Furthermore, ambiguities (ie., two temperature-
type variables must be connected to two temperature sensors)
have to be resolved manually, yet.

To retrieve the semantic self descriptions the discovery
block must communicate with each device – although the
RTE is not configured yet at this stage and, therefore, at
least real-time communication is not available. Since the self
descriptions need not to be transferred in real-time, the use of
the non-real-time (NRT) channel available in all RTEs seems
obvious. However, not all RTEs offer their NRT capability
before they have been configured. The RTE comparison in
section V will check under which conditions NRT traffic can
be used in the different RTEs.

For the technical realization of the self descriptions SOA
functionalities can be exploited as they include methods for
device description. For example, the SOA implementation
OPC UA offers an object oriented approach for describing
data in an information model. OPC UA also includes a
communication protocol for accessing the model. Another
SOA implementation for the industrial domain, DPWS, offers
similar possibilities. The concrete procedure used in both
implementations for the retrieval of device descriptions can
be found in [11]. As almost all SOA implementations, both
OPC UA and DPWS are based on TCP/IP. Therefore, the
prerequisite for both protocols is an operational NRT channel
for TCP/IP communication.

The compilation function block makes use of the infor-
mation collected by the discovery block. It has to provide the
functionality normally provided by the engineering tool (see
Step 3 - Compilation in section III-B). Due to the complexity
this paper will not provide details on the compilation process
of each RTE. Further information, for example on the Profinet
IO Class B compilation process, can be found in [19]. The
computation of a communication schedule for Profinet IO



Class C is explained in [24]. Instead, this paper is focused
on the analysis of which information has to be available as a
precondition for the compilation process.

The following section will investigate how the autocon-
figuration process can be realized in different RTE variants.
Note, that –independent from the used RTE– each field device
could require additional parametrization, for example sensor
calibration data has to be provided. The automatic generation
of this data is not included in the provided autoconfiguration
approach.

V. APPLICABILITY OF THE AUTOCONFIGURATION
APPROACH ON CONCRETE RTES

The last section has given a general introduction to the
mechanisms needed for RTE autoconfiguration. On this basis,
this section will analyze different RTEs variants with regard to
a concrete implementation of the autoconfiguration approach.
The important issues in this context are:

1) NRT channel: What steps are necessary to enable
non-real-time TCP/IP communication used for the
retrieval of the self descriptions?

2) Discovery: Which network configuration data is nec-
essary for the compilation process and how can it
discovered automatically?

3) Hot-plugging: When the RTE is in its operational
state, is it possible to add new devices without
interrupting the real-time communication?

In the following, these questions are addressed for the five
most common category B and C RTEs in the industrial automa-
tion domain which are Profinet RT, Profinet IRT, Ethernet/IP,
Powerlink and Ethercat [25].

The first and the third question will be answered by
analyzing the RTE protocol. Therefore a short introduction to
the respective RTE is given, whereby the focus is on the media
access method since the prerequisites for the NRT channel as
well as the hot-plugging capability are closely linked to the
media access. In the context of the second question (discovery
of network configuration data), the examination of the RTE
startup phase could be helpful. In each RTE, the controller
send startup frames to its slaves. These frames include all
parameters necessary for RTE commissioning. However, it
is not always possible to determine if the parameters have
been calculated by the engineering tool (in this case these
parameters can be set automatically by the autoconfiguration
service, too) or a user-input was necessary for the individual
parameter. Therefore, a practically approach has been chosen:
The engineering tools available for the different RTEs have
been checked to see what parameters can be set by the user. For
reasons of simplification only parameters have been considered
which must be set, optional or parameters with a default value
have been omitted.

A. Profinet IO Class B

Profinet IO Class B –in the following: Profinet RT– is a
category B RTE supporting real-time class 2. It is designed
for cyclic data transfer between one IO-Controller and several
IO-Devices. The latter can be designed modular, whereby the
user can chose the sub-components of such a device.

The following three paragraphs are related to the three
questions mentioned above.

1) Media access & NRT channel: Profinet RT and standard
Ethernet devices can be used in the same physical network
as both use the standard Ethernet media access mechanism.
Furthermore, Profinet RT devices can be accessed by TCP/IP
at any time and, therefore, TCP/IP communication can be
used without prior parametrization of the Profinet network.
However, DHCP usually used in IP networks for address
assignment is not part of the Profinet standard and is not sup-
ported by most Profinet devices. Instead, the autoconfiguration
service must implement an own dynamic address allocation
method for ensuring IP connectivity. Therefore, the Profinet
Discovery and Configuration Protocol (DCP) can be used.
DCP offers possibilities for device discovery and for address
assignment. The real-time capability of Profinet RT is achieved
by using a priority tag in the Ethernet header, whereby Profinet
RT frames are prioritized in the switches of the network.

2) Required information: In the conventional approach for
setting up a Profinet RT network, the user must provide the
installed devices, their device names and their IP addresses.
In the autoconfiguration scenario, this information must be
gathered automatically. During the establishment of the NRT
channel DCP has been used for dynamic device discovery
and address allocation. So, the installed devices and their
addresses are known. Furthermore, the DDFs of each device
are needed by the autoconfiguration service. These files, in
Profinet called Generic Station Description (GSD) file, can be
obtained by accessing a central GSD database, for example.
The correct file for a device can be identified by using vendor
and product IDs. The IDs are stored inside each GSD file and
can be requested from the devices by DCP during the address
assignment process. In the case of modular devices, it is further
necessary that the individual modules attached to a device are
known. These can be identified by using the Profinet command
Read Implicit Request as described in [19].

3) Hot plugging: Hot plugging can be realized by cyclically
broadcasting DCP identify requests. The autoconfiguration
service can detect newly attached devices by their DCP identify
response. After assigning an IP address by DCP, IP connectiv-
ity is given and the self configuration of the new device can
be obtained by using the mentioned SOA protocols OPC UA
or DPWS.

B. Profinet IO Class C

Profinet IO Class C –in the following: Profinet Isochronous
Real-Time (IRT)– is a category C RTE which supports real-
time class 3. It differs from Profinet RT in its strictly determin-
istic data traffic. This results in a more complex engineering
process.

1) Media access & NRT channel: Profinet IRT divides the
communication into three phases: In the isochronous phase
the communication is exactly scheduled: Each device sends
its data at pre-defined times. Therefore all devices must be
synchronized in time. The isochronous phase is followed by
a phase for Profinet RT and, at last, by a phase for non-
real-time data. Before the isochronous communication has
been configured by the IO-Controller, a Profinet IRT network



behaves like a Profinet RT network. Accordingly, the NRT
channel can be realized as in Profinet RT.

2) Required information: In addition to the data required
in Profinet RT, in the IRT variant the network topology must
be known for the calculation of the communication schedule.
The autoconfiguration service can discover the topology by
using the Link Layer Discovery Protocol (LLDP) which is
mandatory in Profinet IRT. The communication planning can
be based on the algorithm published in [24].

3) Hot plugging: New devices can be detected by DCP
identify requests as described in the Profinet RT section as
long as the network topology between already existing devices
is not changed. A new device can be attached to an unused
switch port, for example. The switch buffers incoming non-
IRT packets and enqueues them into the non-real-time phase.
However, after detecting a new device the communication
must be re-scheduled which results in an interruption of the
isochronous data transfer.

C. Ethernet/IP

Ethernet/IP (EIP) uses the TCP/IP-based Common Indus-
trial Protocol (CIP). In combination with the additional CIP
Sync, which introduces hardware-based time synchronization,
Ethernet/IP is a category C RTE supporting real-time class 3.

1) Media access & NRT channel: EIP combines properties
of Profinet RT (prioritization) and Profinet IRT (synchroniza-
tion). Implicit Messages, used for transferring cyclic process
data, are prioritized by an Ethernet priority tag. In addition,
they contain a timestamp containing the acquisition time for
input data. For output data, the timestamp specifies the time
of data execution. However, in contrast to Profinet IRT, is not
ensured that the packets receive their recipient on time. The
Precision Time Protocol used for synchronization allows the
conflict-free use of Ethernet/IP and standard Ethernet devices
in the same network. Thus, the NRT channel can be realized
without any additional effort. The address assignment can be
carried out by using usual IP-based methods like DHCP.

2) Required information: Like in Profinet, in EIP the
installed devices and their addresses must be known. Since
IP connectivity is available by default, this information can be
obtained by using SOA-based discovery methods (see phase 2
in section VI). Furthermore, also in EIP the DDFs, here called
Electronic Data Sheet (EDS), are necessary. The appropriate
files can be identified by their Vendor ID, Device Type and
Product Code. The autoconfiguration service can obtain these
parameters from the EIP devices by using the ListIdentify
command.

3) Hot plugging: IP communication can be used without
restrictions in EIP. So newly connected devices can be detected
by using the just mentioned SOA-based methods. After con-
figuration, the controller can establish a connection to the new
device without interrupting the existing connections.

D. Ethernet Powerlink

Ethernet Powerlink (EPL) can be assigned to the RTE cate-
gories B and C. It uses a specialized media access mechanism
which can be realized in software allowing the use of standard
Ethernet components (category B). The respective hardware

variant of EPL corresponds to category C. The latter conforms
with real-time class 3.

1) Media access & NRT channel: In EPL the media
access is controlled by the Slot Communication Network
Management (SCNM): One central Managing Node (MN)
sends cyclically PollRequests to each of the other devices
called Controlled Nodes (CN). The CNs may only send data
upon request by the MN. Therefore packet collisions or waiting
times in switches cannot occur. Indeed, EPL is the only RTE
that uses hubs instead of switches. Since there is no need
for collision avoidance and hubs do not analyze the frames,
they can perform better performance than switches. Non-EPL
devices must not be attached to an EPL network because
they would interrupt the communication. However, the NRT
channel can be realized by exploiting the fact that all EPL
nodes resist in a basic Ethernet mode by default after system
start-up which offers IP connectivity. After retrieving the self
descriptions, the autoconfiguration service can parametrize the
MN and, afterwards, close its connection to the EPL network.

2) Required information: The autoconfiguration service
must be aware of the installed devices, their node IDs and
the corresponding DDFs (called EDS as in EIP). The installed
devices and their IP addresses can again be discovered by
using SOA methods. The node ID can be derived from the
IP address since each EIP device has an address of the form
192.168.100.xxx where xxx stands for the node ID. As in EIP,
the EDS can be identified by Vendor ID, Device Type and
Product Code. In EPL, these parameters can be obtained by
using the IdentRequest command. The similarities of EPL and
EIP are due to the fact that both use CANopen as application
protocol.

3) Hot plugging: By default, EPL does not support any
discovery functions. Also, an IP connection to an unconfigured
node is not possible during operation. However, as described
in [17], it is possible to detect new a CN when it enters the
network with a specific preconfigured ”entry-node-ID”. This
ID is regularly polled by the MN. If a new CN is detected, it
gets a new ID by the MN. Afterwards, the CN is reachable by
IP traffic which is transferred during the EPL asynchronous
phase. At this stage, the new device can be detected by the
autoconfiguration service. After configuration, the MN can
integrate the new device into the cyclically poll interval without
interrupting the isochronous data traffic.

E. Ethercat

Ethercat is a category C RTE and can fulfill the demands
of real-time class 3. Although the master can be implemented
using standard Ethernet hardware, the slaves require dedicated
Ethercat controllers. The basic principle of Ethercat is based
on a logical ring topology.

1) Media access & NRT channel: The master sends one
Ethernet frame containing the input process data for all devices
into the ring. Afterwards, the frame is processed ”on the fly”
by each slave: it extracts its input data, inserts its output data
and forwards the frame to the next device. This process is
carried out in hardware which results in low and constant
delays. At the end of the ring, the fully processed frame is sent
back to the master. On the Ethernet layer all Ethercat devices
appear as one single device since they all use the same MAC



address. Therefore, an IP connectivity is not given and the
autoconfiguration service cannot access the Ethercat devices
directly. Instead, it must be connected to a special Ether-
cat ”switchport”, which tunnels standard Ethernet traffic to
Ethercat devices. Therefore, the master allocates virtual MAC
addresses to the slaves. However, the Ethercat network must
be at least in the state Pre-Operational. The autoconfiguration
service can configure this state by using default parameters.
Afterwards, the Ethercat network is transparent for NRT traffic.

2) Required information: As usual, the autoconfiguration
service needs information about the installed devices, the
DDFs and the node addresses. SOA-based device discovery
can also be used in Ethercat after the Pre-Operational state
has been established. The node addresses can be allocated
based on the node’s position in the Ethercat ring. The DDFs
are called Ethercat XML Device Description and includes the
same parameters as in EPL and EIP since Ethercat also uses
CANopen. The devices can be identified by using the device’s
Slave Information Interface (SII).

3) Hot plugging: New devices connected to the Ethercat
network are in the idle state and do not interfere the commu-
nication. However, in this state they have no IP connectivity,
so they must be discovered by Ethercat-inherent methods.
Therefore, the master can recognize new devices by regularly
sending broadcast read requests to the SII of the devices. The
SII is accessible even if the Ethercat device is in idle state.

VI. GENERIC RTE AUTOCONFIGURATION APPROACH

This section will summarize the autoconfiguration pro-
cedure based on the findings of section V. To realize the
aim of keeping the approach as generic as possible IP-based
technologies are intended whenever feasible. In general, the
autoconfiguration sequence can be divided into five phases.
The respective implementation of each phase is again RTE-
dependent:

Phase 1: The first step is the configuration of the NRT
channel to ensure the IP connectivity required by phase 2.
In all RTEs this requires an address assignment – either by
an RTE-specific method (Profinet) or by standard TCP/IP
methods (EIP, EPL, Ethercat). Additionally, in Ethercat a
specific network state must be prepared.

Phase 2: In the discovery phase the devices attached to
the network and their basic characteristics (i.e., Product and
Vendor-ID) are detected and afterwards their semantic self
descriptions are retrieved. As device discovery and device
description are both integral functionalities of SOAs, it seems
obvious to exploit this paradigm in the context of RTE autocon-
figuration for the implementation of a generic discovery and
capability assessment method. Details on the device discovery
and description process of both protocols can be found in [11].
It should be noted that only these both SOA aspects are utilized
in this work. Other functionalities like service orchestration do
not matter here. However the use of SOAs could also be useful
when the autoconfiguration approach should be integrated
into next generation SOA-based automation systems. Device
discovery is not needed in Profinet since the available devices
and their basic characteristics are published during the DCP
address assignment process.

Phase 3: In this phase RTE-dependent information about
the network configuration is collected which is needed in phase
4. The individual steps are described in chapter V for each RTE
under the point required information.

Phase 4: At this point, all information normally provided
by the engineer is available. The autoconfiguration service
now has to compute all RTE parameters needed by the RTE
controller. At last, the compiled RTE configuration file must
be uploaded to the controller. As mentioned in the description
of the compilation function block in section IV, the details of
this phase are not part of this paper.

Another aspect of section V was the hot-plug capability
of the different RTEs. The summarization in table I shows,
in which RTE hot-plugging is possible and how new devices
can be detected. In general, PN RT, EIP and Ethercat support
hot-plugging. However, in PN RT and Ethercat RTE-inherent
methods must be used for the detection of new devices. In
EPL special precautions at the slave device must be taken in
order to enable hot-plugging. In PN IRT no hot-plugging is
possible since every network topology change requires a restart
of communication.
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Fig. 5. Autoconfiguration procedure for different RTEs

TABLE I. HOT-PLUG CAPABILITY OF DIFFERENT REAL-TIME
ETHERNETS

Hot-plug Device detection
capability realized by

Profinet RT + DCP polling
Profinet IRT - -
Ethernet/IP + Any IP-based method
Ethernet Powerlink ◦ CN with modified ID
Ethercat + SII polling



VII. CONCLUSION AND FUTURE WORK

In this paper an analysis of the RTE variants Profinet
RT, Profinet IRT, Ethernet/IP, Powerlink and Ethercat with
regard to their automatic configuration has been presented.
Taking existing approaches into account, general function
blocks for RTE autoconfiguration have been derived and it
has been checked how their different functionalites could be
realized within the mentioned RTEs. In particular, it has been
shown how the non-real-time channel of the RTEs can be
utilized for device discovery purposes and for the retrieval of
semantic self descriptions. The latter are a potential basis for
the automatic process data assignment between the process’s
control application and the field devices.

As part of future work the results of the analysis have to
be applied to concrete implementations. Therefore, challenges
like the computation of RTE communication parameters as part
of the compilation process must be addressed. In the case of
Profinet IO there are existing solutions, like in [18] and in
[24], which must be merged. Furthermore, the concept for the
automatic process data assignment has to be further developed
and to be checked for practicability.

Consideration should also be given on the activities of the
Time-Sensitive Networking Task Group of the IEEE which
aims at the definition of a new industry standard for real-time
Ethernet as a successor of Ethernet AVB. There is the chance
that the current different RTE variants could be replaced by one
common IEEE standard in the future [26]. The impact of time-
sensitive networks on the engineering process of industrial
automation systems has to be investigated.

ACKNOWLEDGEMENT

This work was partly funded by the German Federal
Ministry of Education and Research (BMBF) within the
project HiFlecs (grant number: 16KIS0266) and the Leading-
Edge Technology Cluster ”Intelligent Technical Systems
OstWestfalenLippe” (it’s OWL) (grant number: 02PQ1020).

REFERENCES

[1] H.-P. Wiendahl, H. A. ElMaraghy, P. Nyhuis, M. F. Zäh, H.-H.
Wiendahl, N. Duffie, and M. Brieke, “Changeable Manufacturing -
Classification, Design and Operation,” CIRP Annals - Manufacturing
Technology, vol. 56, no. 2, pp. 783–809, 2007.

[2] M. G. Mehrabi, A. G. Ulsoy, and Y. Koren, “Reconfigurable manu-
facturing systems: Key to future manufacturing,” Journal of Intelligent
Manufacturing, vol. 11, no. 4, pp. 403–419, 2000.
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