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Abstract. It is likely in real-world applications that only little data is
available for training a knowledge-based system. We present a method for
automatically training the knowledge-representing membership functions
of a Fuzzy-Pattern-Classification system that works also when only little
data is available and the universal set is described insufficiently. Actually,
this paper presents how the Modified-Fuzzy-Pattern-Classifier’s member-
ship functions are trained using probability distribution functions.
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1 Introduction

In many knowledge-based industrial application there is a necessity to train
using a small data set. It is typical that there are less than ten up to some tens
of training examples. Having only such a small data set, the description of the
underlying universal set, from which these examples are taken, is very vague
and connected to a high degree of uncertainty. It was Zadeh [1] who created
the basic theory for the nowadays established fuzzy systems, which are suitable
for modelling uncertain knowledge using possibility measures. One class of such
systems are the Fuzzy-Pattern-Classifiers (FPC) introduced by Bocklisch [2]
which are widely used in pattern recognition applications for object classification.
The basic concept is having a set of fuzzy membership functions μ : x → [0, 1]
per class which model characteristic features of those classes. These membership
functions map an object’s feature value x ∈ IR to the unit interval representing
the membership or degree of similarity of x to an ideal class member’s feature. All
memberships are aggregated subsequently by some fuzzy aggregation operator.
The object is then assigned to the class having the highest aggregated value.

One established member of the class of Fuzzy-Pattern-Classifiers is Lohweg’s
Modified-Fuzzy-Pattern-Classifier (MFPC) [3,4]. It is widely applied and estab-
lished in the industry, for instance in printing facilities for checking the print
results to give only one example [4,5,6,7]. In these applications, it proved its
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robustness, performance, and efficiency when implemented in hardware-based
solutions.

The MFPC’s membership functions are parameterisable unimodal potential
functions having at least two degrees of freedom left to the user which demand
the application of costly heuristics for finding their values. Mostly, the optimal
parameters are not found, resulting in a loss of robustness and therefore deteri-
orated classification rates.

In this paper we suggest an automatic method of learning the fuzzy member-
ship functions by estimating the data set’s probability distribution and deriv-
ing the function’s parameters automatically from it. The resulting Probabilistic
MFPC (PMFPC) membership function, extends the MFPC approach to asym-
metric membership functions and leaves only one degree of freedom leading to
a shorter learning time for obtaining stable and robust classification results.

There exist other approaches in the literature, which go in our direction, but
are not applicable here. Rodner and Denzler’s approach [8] transfers feature
relevance from previous, similar applications to choose the respective features
for a new classification task. Our approach is directed to applications where no
previous knowledge is available and the features are chosen heuristically. Drobics
et al.’s FS-FOIL method is also very promising, but the classification results
presented in [9] make use of a bigger training set. Also, the learning approach
of finding fuzzy decision rules is different from ours where fuzzy membership
functions’ shapes are determined.

After having introduced the topic of this paper in this Section, we proceed in
Sect. 2 by briefly introducing the Modified-Fuzzy-Pattern-Classifier. In Sect. 3
the new probabilistic parameterisation approach is described. The experiments
presented in Sect. 4 return promising results that the incorporation of PMFPC
membership functions in fuzzy classification tasks can improve classification re-
sults significantly when compared to MFPC. The paper concludes with Sect. 5
and provides an outlook on further research.

2 Modified Fuzzy Pattern Classifier

A hardware optimized derivate of Bocklisch’s Fuzzy-Pattern-Classifier (FPC) [2]
is the Modified-Fuzzy-Pattern-Classifier (MFPC), which can be efficiently imple-
mented as a pattern recognition system on a Field Programmable Gate Array
(FPGA), applicable in high-speed industrial applications [4]. Here, its properties
shall be briefly introduced. For details, we refer to [4] and [6].

The hardware efficient membership function used for the MFPC is Eichhorn’s
parameterisable unimodal potential function [10] defined as

μMFPC (m,p) = 2−d(m,p) ∈ [0, 1] with d (m,p) =
(

|m−S|
C

)D

, (1)

where p = (S, C, D) is a parameter vector defining the membership function’s
properties, namely mean value (S), width (C), and steepness of its edges (D).
d (m,p) is the distance measure of the inspected feature m with regard to the
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Fig. 1. Sample MFPC membership function at D = 2 and pCe = 0 (solid). The left
and right plots show changes (dashed → dash-dotted) with increasing pCe and D,
respectively. The vertical dotted line shows respective S ± C, the bold-dotted line S.

properties of the membership function, i. e. how far is the measured feature m
away from its mean value S. A sample MFPC membership function is depicted
in Fig. 1.

The MFPC membership function’s parameters S and C are obtained auto-
matically during a learning phase after extracting all regarded features m from
N typical members of a class by [3] S = Δ + mmin, C = (1 + 2pce) · Δ, where
pce ∈ [0, 1] is called percental elementary fuzziness and defines an arbitrary,
user-defined width adjustment factor, and where mmax = maxN

i=1 mi, mmin =
minN

i=1 mi, Δ = mmax−mmin
2 . The integer-valued parameter D is chosen arbitrar-

ily, typically as a power of 2 to keep calculating the distance measure d (m,p)
hardware-efficient [3].

The MFPC aggregation of M different features is expressed by

hMFPC (m,P) = 2−
1

M

∑M
i=1 di(mi,pi), with di (mi,pi) =

(
|mi−Si|

Ci

)Di

, (2)

where m is a vector of feature values mi and P a matrix of parameter vectors pi,
parameterising each membership function belonging to a feature mi. It is proved
in [6] that the membership functions are aggregated using the well-known geo-
metric mean aggregation operator, which is a fuzzy averaging operator. Since (2)
can be rewritten to

hMFPC (m,P) =
(∏M

i=1 2−di(mi,pi)
) 1

M

=
(∏M

i=1 μMFPC,i(mi,pi)
) 1

M

,

it is possible to use any other fuzzy membership function instead of μMFPC for
existing MFPC applications [6]. μMFPC’s parameters D and pce are not deter-
mined automatically and left to the user. An appropriate substitute of μMFPC,
which is parameterised completely automatically (or at least with a smaller num-
ber of free parameters) and yields optimal performances, was therefore searched
for and found in the Probabilistic MFPC membership function. This approach
is presented in the following.
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3 Probabilistic MFPC Membership Function

To learn a fuzzy membership function automatically, Random Fuzzy Variables
(RFV) can be applied [11], but this approach has disadvantages towards high-
speed real-time applications. The Probabilistic MFPC (PMFPC) membership
function approach we present here is able to preserve real-time demands (exper-
iments revealed that the parameterisation is executed one order of magnitude
faster than the RFV approach) while producing an optimal data set representa-
tion by incorporating an estimated probability distribution of the data.

The PMFPC approach is based on a generalised MFPC membership function

μPMFPC (m,p) = 2−ld( 1
B )d(m,p) ∈ [0, 1] with d (m,p) =

(
|m−S|

C

)D

, (3)

where B ∈ (0, 1] is the class boundary membership parameter, i. e. defining the
membership function’s value at m = S ± C: μPMFPC (S ± C,p) = B. This
parameter was actually already introduced by Bocklisch in his Fuzzy-Pattern-
Classifier definition [2]. D and B are automatically parameterised in the PMFPC
approach. pce is yet not automated to preserve the possibility of adjusting the
membership function slightly without needing to learn the membership functions
from scratch. The algorithms presented in this paper for automatically parame-
terising parameters D and B are inspired by former approaches: Bocklisch as well
as Eichhorn developed algorithms which allow obtaining a value for the (MFPC)
potential function’s parameter D automatically, based on the used training data
set. Bocklisch also proposed an algorithm for the determination of B. For details
we refer to [2] and [10]. However, these algorithms yield parameters that do not
fulfil the constraints connected with them (cf. Sect. 3.1 and 3.2) in all practical
cases. Hence, we propose a probability theory-based alternative described in the
following.

3.1 Automatically Parameterising the Steepness of the Edges

Bocklisch formulated constraints for D so the resulting membership function
appropriately describes the data set for which the membership function is cre-
ated [2]. He demands (i) 2 ≤ D ≤ 20; (ii) if the objects in the data set are uni-
formly distributed, the membership function should be sharp-edged (D = 20);
(iii) in case of an accumulation of objects at the outer boundaries, this distribu-
tion is represented by a sharp membership function as well (D = 20); and (iv)
an inner accumulation of objects should generate a fuzzy membership function,
thus D → 2. These constraints are visualised in Fig. 2, showing ten distributed
data points Xi and the resulting membership function μ(x) in accordance to the
aforementioned constraints. Bocklisch’s and Eichhorn’s algorithms adjust D af-
ter comparing the actual distribution of objects to a perfect uniform distribution.
However, the algorithms tend to change D for every (small) difference between
the actual distribution and a perfect uniform distribution. This explains why
both algorithms do not fulfil the constraints when applied to random uniform
distributions.
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Fig. 2. Distributions of Xi (bold dots) and their corresponding membership functions

We actually stick to the idea of adjusting D with respect to the similarity
of the actual distribution compared to an artificial, ideal uniform distribution,
but we use probability theoretical concepts. Our algorithm basically works as
follows: At first, the empirical cumulative distribution function (ECDF) of the
data set under investigation is determined. Then, the ECDF of an artificial
perfect uniform distribution in the range of the actual distribution is determined,
too. The similarity between both ECDFs is expressed by its correlation factor
which is subsequently mapped to D by a parameterisable function.

Determining the Distributions’ Similarity. Consider a sorted vector of n
feature values m = (m1, m2, . . . , mn) with m1 ≤ m2 ≤ . . . ≤ mn, thus mmin =
m1 and mmax = mn. The corresponding ECDF Pm(x) is determined by Pm(x) =
|m̃|
n with m̃ = (mi|mi ≤ x ∀i ∈ INn), where |x| denotes the number of elements

in vector x and INn = [1, 2, . . . , n]. The artificial uniform distribution is created
by equidistantly distributing n values ui, hence u = (u1, u2, . . . , un) with ui =
m1 +(i − 1) · mn−m1

n−1 . Its ECDF Pu(x) is determined analogously by substituting
m with u. In the next step, the similarity between both distribution functions
is computed by calculating the correlation factor [12]

c =
∑ k

i=1(Pm[xi]−Pm)(Pu[xi]−Pu)√∑ k
i=1(Pm[xi]−Pm)2 ∑ k

i=1(Pu[xi]−Pu)2 ,

where Pa is the mean value of Pa(x), computed as Pa = 1
k

∑k
i=1 Pa[xi]. c’s

properties can be found in [12]. It is actually the empirical correlation coefficient,
demanding sampled data to be determined, necessarily sampled at the same
locations xi. Since Pm(x) cannot be predicted, it seems to be appropriate to
sample at k equidistantly spaced locations. k is determined by k = 10�log10 n�+1,
but at least k = 50. This guarantees that the functions are sampled at not less
than five times as many sampling points as feature values are available. The
equidistant locations are determined as xi = m1 + (i − 1) · mn−m1

k−1 ∀i ∈ INk.
The correlation factor must now be mapped to D while fulfilling Bocklisch’s

constraints on D. Therefore, the average influence α(D) of the parameter D on
the membership function μMFPC, which is the base for μPMFPC, is investigated
to derive a mapping based on it. αD(x) is determined by taking ∂

∂DμMFPC(x, D)
with x = m−S

C , x > 0:
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αD(x) = ∂
∂DμMFPC(x, D) = ∂

∂D2−xD

= ln(2)
(
−2−xD

)
xD ln(x).

The locations x represent the distance to the membership function’s mean value
S, hence x = 0 is the mean value itself, x = 1 is the class boundary S + C,
x = 2 twice the class boundary and so on. The average influence of D on the
membership function is evaluated for −1 ≤ x ≤ 1: This interval bears the most
valuable information since all feature values of the objects in the training data
set are included in this interval, and additionally those of the class members
are expected here during the classification process, except from only a typi-
cally neglectable number of outliers. Anyway, the range of x must be necessarily
bounded since the average influence of D on the membership function, namely
α(D) = 1

xr−xl

∫ xr

xl
αD(x) dx, is computing αD(x)’s mean value along x. But since

limx→∞ αD(x) = 0 ∀D, integration of αD(x) over IR would yield α(D) = 0 ∀D,
which is not true for that range of x where the majority of objects is present.
The mapping of D : c → [2, 20], which is derived in the following, must take
D’s average influence into consideration. A graphical representation of α(D) is
shown in Fig. 3 for the range 2 ≤ D ≤ 20, which is actually the only of interest.

Mapping the Distribution’s Similarity to the Edge’s Steepness. In the
general case, the correlation factor c can take values from the interval [−1, 1],
but when evaluating distribution functions, the range of values is restricted to
c ∈ [0, 1], which is because probability distribution functions are monotonically
increasing. This holds for both distributions, Pm(x) as well as Pu(x). It follows
c ≥ 0. The interpretation of the correlation factor is straight forward. A high
value of c means that the distribution Pm(x) is close to a uniform distribution.
If Pm(x) actually was a uniform distribution, c = 1 since Pm(x) = Pu(x). Ac-
cording to Bocklisch, D should take a high value here. The more Pm(x) differs
from a uniform distribution, the more c → 0, the more D → 2. Hence, the
mapping function D(c) must necessarily be an increasing function with taking
the exponentially decreasing average influence of D on the membership function
α(D) into consideration (cf. Fig. 3). An appropriate mapping D : c → [2, 20] is
an exponentially increasing function which compensates the changes of μMFPC

with respect to changes of c. While big changes in small c values result in minor
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Fig. 3. Average influence of the parameter D on μMFPC with respect to D
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changes of D, implying only a small change of the membership function, D in-
creases rapidly for big correlation factors, not affecting the membership function
strongly. We suggest the following heuristically determined exponential function,
which achieved promising results during experiments (cf. Sect. 4):

D(c) = 19c2q

+ 1 ⇒ D(c) ∈ [2, 20], (4)

where q is an adjustment parameter. This formulation guarantees that D ∈ [2, 20]
∀c since c ∈ [0, 1]. Using the adjustment parameter q, D is adjusted with respect
to the aggregation operator used to fuse all n membership functions representing
each of the n features. Each fuzzy aggregation operator behaves differently. For
a fuzzy averaging operator h(a), Dujmović’ introduced the objective measure of
global andness ρg (for details cf. [13,6]). Assuming q = 1 in the following cases,
it can be observed that, when using aggregation operators with a global andness
ρ

h(a)
g → 0, the aggregated single, n-dimensional membership function is more

fuzzy than that one obtained when using an aggregation operator with ρ
h(a)
g → 1,

where the resulting function is sharp. This behaviour should be compensated
by adjusting D in such a way, that the aggregated membership functions have
comparable shapes: at some given correlation factor c, D must be increased if ρg

is high and vice versa. This is achieved by mapping the aggregation operator’s
global andness to q, hence q : ρg → IR. Our suggested solution is a direct mapping
of the global andness to the adjustment parameter q, hence q(ρg) = ρg ⇒ q ∈
[0, 1]. Mapping (4) is now completely defined and consistent with Bocklisch’s
constraints and our observations regarding the aggregation operator’s andness.

3.2 Determining the Class Boundary Membership Parameter

In addition to the determination of D, we present an algorithm to automatically
parameterise the class boundary membership B. This parameter is a measure for
the membership μMFPC(m,p) at the locations m ∈ {S + C, S − C}. Typically,
the class boundary membership is assigned a value of B = 0.5. The algorithm
for determining B is based on the algorithm Bocklisch developed [2], but was not
adopted as it stands since it has some disadvantages if this algorithm is applied
to distributions with a high density especially on the class boundaries. Due to
space limitations, this cannot be presented here.

When looking at μMFPC, the following two constraints on B can be derived:
(i) The probability of occurrence is the same for every object in uniform dis-
tributions, also on the class boundary. Here, B should have a high value. (ii)
For distributions where the density of objects decreases when going towards the
class boundaries B should be assigned a small value, since the probability that
an object occurs at the boundary is smaller than in the centre.

Hence, for sharp membership functions (D → 20) a high value for B should be
assigned, while for fuzzy membership functions (D → 2) the value of B should
be low. B = f(D) must have similar properties like α(D), meaning B changes
quickly where α(D) changes quickly and vice versa. We adopted Bocklisch’s
suitable equation for computing the class boundary membership [2]:
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B =
1

1 +
(

1
Bmax

− 1
)
· (Dmax

D

)1+ 1
q

,

where Bmax ∈ (0, 1) stands for the maximum possible value of B with a proposed
value of 0.9, Dmax = 20 is the maximum possible value of D and q is identical
in its meaning and value to q as used in (4).

3.3 An Asymmetric PMFPC Membership Function Formulation

A data set may be represented better if the membership function was formulated
asymmetrically instead of symmetrically as is the case with (3). This means

μPMFPC (m,p) =

⎧
⎨
⎩

2−ld
(

1
Bl

)( |m−S|
Cl

)Dl

, m ≤ S

2−ld( 1
Br

)( |m−S|
Cr

)Dr

, m > S
, (5)

where S = 1
M

∑M
i=1 mi, mi ∈ m is the arithmetic mean of all feature values. If S

was computed as introduced in (2), the resulting membership function would not
describe the underlying feature vector m appropriately for asymmetrical feature
distributions. A new computation method must therefore also be applied to
Cl = S −mmin + pCe · (mmax −mmin) and Cr = mmax −S + pCe · (mmax −mmin)
due to the change to the asymmetrical formulation. To compute the remaining
parameters, the feature vector must be split into the left side feature vector
ml = (mi|mi ≤ S) and the one for the right side mr = (mi|mi ≥ S) for all mi ∈
m. They are determined following the algorithms presented in the preceding
Sections, but using only the feature vector for one side to compute this side’s
respective parameter.

4 Experimental Results on PMFPC

In order to evaluate the classification performance of our probabilistic approach
on parameterising the fuzzy membership functions, the same data set is used to
learn both the original MFPC membership function μMFPC and also μPMFPC.
This data set “OCR” (the same as is used in [6]) was compiled in an industrial op-
tical character recognition application and consists of both a training and a test
data set. The test data set consists of 746 objects with each 17 features assigned
to twelve classes. The dedicated training data set used to learn the membership
function comprises 17 images per class, hence 204 images. This represents a typ-
ical situation occurring in classification applications, where the training data set
from which a robust classifier is to be derived is very small. For details about the
data set we refer to [6]. The subsequent classification is executed with different
aggregation operators by using the classifier framework presented in [6]. Here, the
incorporated aggregation operators are Yager’s family ofOrdered Weighted Aver-
aging (OWA) [14] and Larsen’s family of Andness-directed Importance Weighting
Averaging (AIWA) [15] operators (applied unweighted here)—which both can be
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adjusted in their andness degree—and additionally MFPC’s original geometric
mean (GM). Due to space limitations, we refer to [14] and [15] for the defini-
tion of OWA and AIWA operators. As a reference, the data set is also classified
using a Support Vector Machine (SVM) with a Gaussian radial basis function
(RBF). Since SVMs are capable of distinguishing between only two classes, the
classification procedure is adjusted to pairwise (or one-against-one) classification
according to [16]. Our benchmarking measure is the classification rate r+ = n+

N ,
where n+ is the number of correctly classified objects and N the total number of
objects that were evaluated. The best classification rates at a given aggregation
operator’s andness ρg are summarised in the following Table 1, where the best
classification rate per group is printed bold.

Table 1. “OCR” classification rates r+ for each aggregation operator at andness de-
grees ρg with regard to membership function parameters D and pCe

Aggregation μPMFPC μMFPC
Operator D = 2 D = 4 D = 8 D = 16

ρg pCe r+ pCe r+ pCe r+ pCe r+ pCe r+
0.5000 AIWA 0.255 93.70% 0.370 84.58% 0.355 87.67% 0.310 92.36% 0.290 92.90 %

OWA 0.255 93.70% 0.370 84.58% 0.355 87.67% 0.310 92.36% 0.290 92.90 %
0.6000 AIWA 0.255 93.16% 0.175 87.13% 0.205 91.02% 0.225 92.36% 0.255 92.23 %

OWA 0.255 93.57% 0.355 84.58% 0.365 88.47% 0.320 92.63% 0.275 92.76 %
0.6368 GM 0.950 84.45% 0.155 81.77% 0.445 82.17% 0.755 82.44% 1.000 82.44 %

AIWA 0.245 91.42% 0.135 85.52% 0.185 90.08% 0.270 89.81% 0.315 89.95 %
OWA 0.255 93.57% 0.355 84.72% 0.355 88.74% 0.305 92.63% 0.275 92.76 %

0.7000 AIWA 1.000 83.65% 0.420 82.71% 0.790 82.57% 0.990 82.31% 1.000 79.22 %
OWA 0.280 93.57% 0.280 84.85% 0.310 89.01% 0.315 92.76% 0.275 92.63 %

The best classification rates for the “OCR” data set are achieved when the
PMFPC membership function is incorporated, which are more than 11% better
than the best incorporating μMFPC. The Support Vector Machine achieved a
best classification rate of r+ = 95.04 % by parameterising its RBF kernel with
σ = 5.640, which is 1.34 % or 10 objects better than the best PMFPC approach.

5 Conclusion and Outlook

Based on the MFPC membership function, we developed and presented a prob-
abilistic parameterisation method, which automatically learns the membership
functions based on a given set of training data. This method yields membership
functions which outperform any approach using μMFPC as a fuzzy classifier’s
membership functions and provides a performance similar to a Support Vector
Machine for the evaluated sample data set. Nevertheless, the presented approach
is not intended to serve as a SVM substitute, but to show its possible perfor-
mance compared to a state-of-the-art classification technique while providing
robust results for small training data sets and preserving real-time demands as
well as hardware-implementability. All results obtained must be seen in the scope
of the test case, general statements cannot be derived. Still more data sets need
to be classified to see if the trends hold.
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